Central European Journal of Medicine

, Volume 4, Issue 1, pp 26–31 | Cite as

Markers of oxidative stress in acute myocardial infarction treated by percutaneous coronary intervention

  • Eva Sedláková
  • Oliver Rácz
  • Eva Lovásová
  • Roman Beòaèka
  • Martin Kurpas
  • Anna Chmelárová
  • Ján Sedlák
  • Martin Studenèan
Research Article


In the current study, we evaluated the dynamics of oxidative stress markers in patients with acute myocardial infarction (AMI) treated by primary percutaneous coronary intervention (PCI). Thirty consecutive patients with AMI with ST elevation were included. Plasma lipid peroxidation end product malondialdehyde (MDA) and total antioxidant capacity (TAC) in blood plasma were evaluated. Peripheral venous blood samples were obtained prior to reperfusion and at five time points after reperfusion. The control group consisted of 20 ischemic patients without acute coronary syndrome. TAC in the AMI group at admission was lower than in control patients (1.26 + 0.32 vs. 1.52 + 0.24 mmol/l). Within 1 h after reperfusion, in most cases, values significantly declined (1 min, 1.10 + 0.33 mmol/l; 1 h, 1.06 + 0.21 mmol/l [p= 0.03]). After 3 h, values began to increase (1.14 + 0.29 mmol/l) and returned to basal values after 3 d (1.29 + 0.24 mmol/l). MDA levels in AMI patients at admission were higher than in control patients (1.66 + 0.55 vs. 1.44 + 0.55 mmol/l) but showed a sustained decrease over the 3 h after reperfusion of the occluded artery (1 min, 1.57 + 0.37 mmol/l; 1 h, 1.50 + 0.35 μmol/l; 3 h, 1.35 + 0.59 μmol/l [p = 0.03]). Reperfusion of the occluded coronary artery by PCI in AMI lead to an immediate decrease in TAC, suggesting formation of reactive oxygen species. However, the MDA level significantly decreased after reperfusion. This may suggests less reperfusion injury after PCI.


Acute myocardial infarction Reperfusion Oxidative stress Total antioxidant capacity Malondialdehyde 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bolli R., Jeroudi M.O., Patel B.S., DuBose C.M., Lai E.K., Roberts R., et al., Direct evidence that oxygenderived free radicals contribute to postischemic myocardial dysfunction in the intact dog, Proc. Natl. Acad. Sci. USA, 1989, 86, 4695–4699PubMedCrossRefGoogle Scholar
  2. [2]
    Grech E.D., Jackson M.J., Ramsdale D.R., Reperfusion injury after acute myocardial Infarction, Br. Med. J., 1995, 77, 477–478Google Scholar
  3. [3]
    Mužáková V., Kand’ár R., Vojtíšek P., Skalicky J., Vankova R., Cegan A., et al., Antioxidants Vitamin levels and Glutathione Peroxidase Activity During Ischemia/Reperfusion in Myocardial Infarction, Physiol. Res., 2001, 50, 389–396.PubMedGoogle Scholar
  4. [4]
    Lafont A., Marwick T.H., Chisolm G.M., Van Lente F., Vaska K.J., Whitlow P.L., Decreased free radical scavengers with reperfusion after coronary angioplasty in patient with acute myocardial infarction, Am Heart J. 1996, 131, 219–23PubMedCrossRefGoogle Scholar
  5. [5]
    Grines C.L., Browne J.M., Marco J., Rothbaum D., Stone G.W., O’Keefe J., et al., A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction, N. Engl. J. Med., 1993, 10, 673–679CrossRefGoogle Scholar
  6. [6]
    Zijlstra F., De Boer M.J., Hoornje J., Reiffers S., Reiber J.H., Suryapranata H., A Comparison of Immediate Coronary Angioplasty with Intravenous Streptokinase in Acute Myocardial Infarction, N. Engl. J. Med., 1993, 10, 680–684CrossRefGoogle Scholar
  7. [7]
    Yagi K., Assay for serum lipid peroxide level and its clinical significance. In: Yagi K., editor. Lipid peroxides in biology and medicine. New York: New York Academic Press, 1982, 223–242Google Scholar
  8. [8]
    Miller N.J., Rice-Evans C., Davies M.J., Gopinathan V., Milner A., A novel method for measuring capacity and its application to monitoring the antioxidant status in premature neonates, Clin. Sci., 1993, 84, 407–412PubMedGoogle Scholar
  9. [9]
    Rice Evans C., Miller N.J.: Total antioxidant status in plasma and body fluids, Methods Enzymol. 1994, 234, 279–293PubMedCrossRefGoogle Scholar
  10. [10]
    Grech E.D., Jack C.I., Bleasdale C., Jackson M.J., Baines M., Faragher E.B. et al., Differential freeradical activity after successful and unsuccessful thrombolytic reperfusion in acute myocardial infarction, Coron. Artery Dis., 1993, 4, 769–774PubMedCrossRefGoogle Scholar
  11. [11]
    Beard T., Carrie D., Boyer M.J., Boudjemaa B., Ferrières J., Delay M. et al., Production of oxygen free radicals in myocardial infarction treated by thrombolysis. Analysis of glutathione peroxidase, superoxide dismutase and malondialdehyde, Arch. Mal. Coeur. Vaiss., 1994, 87, 1289–1296PubMedGoogle Scholar
  12. [12]
    Iqbal K., Rauoof M.A., Mir M.M., Tramboo N.A., Malik J.A., Naikoo B.A., et al., Lipid peroxidation during acute coronary syndromes and its intensification at the time of myocardial ischemia reperfusion, Am. J. Cardiol., 2002, 89, 334–337PubMedCrossRefGoogle Scholar
  13. [13]
    Young I.S., Purvis J.A., Lightbody J.H., Adgey A.A., Trimble E.R., Lipid peroxidation and antioxidant status following thrombolytic therapy for acute myocardial infarction, Eur. Heart J., 1993, 14, 1027–1033PubMedGoogle Scholar
  14. [14]
    Pucheu S., Coudray C.H., Vanzetto G., Favier A., Machecourt J., de Leiris J., Assesment of radical activity during the acute phase of myocardial infarction following fibrinolysis: Utility of assaying plasma malondialdehyde, Free Radic. Biol. Med., 1995, 19, 873–881PubMedCrossRefGoogle Scholar
  15. [15]
    Berg K., Jynge P., Bjerve K., Skarra S., Basu S., Wiseth R., Oxidative stress and inflammatory response during and following coronary interventions for acute myocardial infarction, Free Radic Res. 2005, 6, 629–636CrossRefGoogle Scholar
  16. [16]
    Tavazzi B., Di Pierro D., Bartolini M., Marino M., Distefano S., Galvano M., et al., Lipid peroxidation, tissue necrosis, and metabolic and mechanical recovery of isolated reperfused rat heart as a function of increasing ischemia, Free Radic. Res., 1998, 1, 25–37CrossRefGoogle Scholar
  17. [17]
    Olsson K.A., Harnek J., Ohlin A.K., Pavlidis N., Thorvinger B., Ohlin H., No increase of plasma malondialdehyde after primary coronary angioplasty for acute myocardial infarction, Scand Cardiovasc J. 2002, 36, 237–40PubMedCrossRefGoogle Scholar
  18. [18]
    Ohlin E., Pavlidis N., Ohlin A.K., Effect of intravenous nitroglycerin on lipid peroxidation after thrombolytic therapy for acute myocardial infarction, Am. J. Cardiol., 1998, 82, 1463–1467PubMedCrossRefGoogle Scholar
  19. [19]
    Grech E.D., Bellamy C.M., Jackson M.J., Muirhead R.A., Faragher E.B., Ramsdale D.R., Free-radical activity after primary coronary angioplasty in acute myocardial infarction, Am. Heart J., 1994, 127, 1443–1449PubMedCrossRefGoogle Scholar
  20. [20]
    Grech E.D., Dodd J.F., Jackson M.J., Morrison W.L., Faragher E.B., Ramsdale D.R., Evidence for free radical generation after primary percutaneous transluminal coronary angioplasty recanalization in acute myocardial infarction, Am J Cardiol. 1996, 77, 122–127PubMedCrossRefGoogle Scholar
  21. [21]
    Ceconi C., Cargoni A., Pasini E., Condorelli E., Curello S., Ferrari R., Evaluation of phospholipid peroxidation as malondialdehyde during myocardial ischemia and reperfusion injury, Am. J. Physiol. Heart Circ. Physiol., 1991, 260, H1057–H1061Google Scholar
  22. [22]
    Tukozkan N., Erdamar H., Seven I., Measurement of total malondialdehyde in plasma and tissues by high-performance liquid chromatography and thiobarbituric acid assay, Firat Tip Dergisi, 2006, 11, 88–92Google Scholar
  23. [23]
    Janssen M., Koster J.F., Bos E., De Jong J.W., Malondialdehyde and glutathione production in isolated perfused human and rat hearts, Circ. Res., 1993, 73, 681–688PubMedGoogle Scholar
  24. [24]
    Milei J., Forcada P., Fraga C.G., Grana D.R., Iannelli G., Chiariello M., et al., Relationship between oxidative stress, lipid peroxidation, and ultrastructural damage in patients with coronary artery disease undergoing cardioplegic arrest/reperfusion, Cardiovasc. Res. 2007, 73, 710–719PubMedCrossRefGoogle Scholar
  25. [25]
    Angelos M.G., Kutala V.K., Torres C.A., He G., Stoner J.D., Mohammad M., et al.: Hypoxic reperfusion of the ischemic heart and oxygen radical generation, Am. J. Physiol. Heart Circ. Physiol., 2006, 290, H341–347PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eva Sedláková
    • 1
  • Oliver Rácz
    • 1
  • Eva Lovásová
    • 1
  • Roman Beòaèka
    • 1
  • Martin Kurpas
    • 1
  • Anna Chmelárová
    • 2
  • Ján Sedlák
    • 3
  • Martin Studenèan
    • 3
  1. 1.Department of Pathophysiology, Faculty of MedicineSafarik UniversityKošiceSlovakia
  2. 2.Department of Experimental Medicine, Faculty of MedicineSafarik UniversityKošiceSlovakia
  3. 3.Eastern Slovak Cardiovascular InstituteKošiceSlovakia

Personalised recommendations