Advertisement

Central European Journal of Medicine

, Volume 4, Issue 1, pp 1–10 | Cite as

Microarray technology in the study of genetic determinants of cardiovascular diseases

  • Anna Gluba
  • Jacek Rysz
  • Tadeusz Pietrucha
Review Article
  • 32 Downloads

Abstract

Microarray, a miniaturized glass slide or membrane with immobilized DNA probes, is a powerful tool for the analysis of mutations, gene expression and sequencing. This technique requires chip (glass slide or membrane) fabrication, preparation of probes and labelled targets, hybridization and data analysis. Microarrays give the possibility to evaluate a wide spectrum of candidate genes, to simultaneously observe interaction of genes, to detect polymorphisms within genes and identify therapeutic targets. Coronary artery disease being a major cause of death, is a disorder influenced by either genetic or environmental factors. Microarray analysis of gene expression can be used to identify genes involved in disease progression and in disease reduction. Chips also allow for the throughput and simultaneous analysis of a great variety of cell types such as cardiomyocytes, monocytes, macrophages, smooth muscle, endothelial, and fibroblasts and chemical mediators involved in cardiovascular disease pathology, their interactions and cumulative effects.

Keywords

Cardiovascular disease Chip Microarray Single nucleotide polymorphism (SNP) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jain K.K., Biochips for Gene Spotting, Science, 2001, 294, 621–625PubMedCrossRefGoogle Scholar
  2. [2]
    Brazma A, Parkinson H, Schlitt T, Shojatalab M., A quick introduction to elements of biology - cells, molecules, genes, functional genomics, microarrays, 2009, http://www.ebi.ac.uk/microarray/biology_intro_files/ISMB2000.pdf
  3. [3]
    Schena M, Shalon D, Davis R.W, O.Brown P., Quantitative monitoring of gene expression patterns, Science, 1995, 270, 467–470PubMedCrossRefGoogle Scholar
  4. [4]
    Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, et al., A Concise Guide to cDNA Microarray Analysis, Biotechniques 2000, 29, 548–562PubMedGoogle Scholar
  5. [5]
    Gwynne P, Heebner G., DNA Chips and Microarrays Part 1, 2001, http://www.sciencemag.org/products/benchtop
  6. [6]
    Fodor P.A, Read J.L, Pirrung M.C, Stryer L, Lu A.T, Solas D., Light-directed, spatially addressable parallel chemical synthesis, Science, 1991, 251, 767–773PubMedCrossRefGoogle Scholar
  7. [7]
    Dolan P.L, Wu Y, Ista L K, Metzenberg R.L, Nelson M.A, Lopez G.P., Robust and efficient synthetic method for forming DNA microarrays, Nucleic Acids Research, 2001, 29, e107PubMedCrossRefGoogle Scholar
  8. [8]
    Ye R W, Wang T, Bedzyk L, Croker K.M, Applications of DNA microarrays in microbial systems. Review article, Journal of Microbiological Methods, 2001, 47, 257–272PubMedCrossRefGoogle Scholar
  9. [9]
    Duggan D.J, Bittner M, Chen Y, Meltzer P, Trent J.M, Expression profiling using cDNA microarrays, Nature Genetics supplement, 1999, 21, 10–14CrossRefGoogle Scholar
  10. [10]
    Telechem International Inc., 2001, www.arrayit.com/Products/Substrates/Google Scholar
  11. [11]
    Afanassiev V, Hanemann V, Wölfl S., Preparation of DNA and protein micro arrays on glass slides coated with an agarose film, Nucleic Acids Research, 2000, 28, e66PubMedCrossRefGoogle Scholar
  12. [12]
    Manning M, Galvin P, Redmond G., A robust procedure for DNA microarray fabrication and screening in the molecular biology laboratory. Application Note, American Biotechnology Laboratory, 2002, 20, 16–18Google Scholar
  13. [13]
    Eisen M.B, Brown P.O., DNA Arrays for Analysis of Gene Expression, Methods Enzymol 1999, 303, 179–205.PubMedCrossRefGoogle Scholar
  14. [14]
    Robinson W.H, Digennaro C, Hueber W, Haab B.B, Kamachi M, Dean E.J, et al., Autoantigen microarrays for multiplex characterization of autoantibody responses, Nature Medicine 2002, 8, 295–301PubMedCrossRefGoogle Scholar
  15. [15]
    Buhler J, Campbell A.M., Anatomy of a Comparative Gene Expression Study, 2002, http://www.cs.wustl.edu/~jbuhler/research/array
  16. [16]
  17. [17]
    Hoffmann F, La Roche, DNA chips: choosy fish hooks, 2004, http://www.roche.com/pages/facets/f22_dna_e.pdf
  18. [18]
    Bertone P, Synder M, Advances in functional protein microarray technology, Review, FEBS J 2005, 272,5400–5411PubMedCrossRefGoogle Scholar
  19. [19]
    Haab B.B, Dunhan M.J, O.Brown P, Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions, Genome Biology, 2001, 2Google Scholar
  20. [20]
    Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A., Protein Microchips: Use for Immunoassay and Enzymatic Reactions, Analytical Biochemistry 2000, 278, 123–131PubMedCrossRefGoogle Scholar
  21. [21]
    Henke C., DNA-chip technologies. Part 2: State-of-the-art and competing technologies., IVD Technology Magazine, 1998, http://www.devicelink.com/ivdt/archive/98/11/010.html
  22. [22]
    Kurella M, Hsiao L.L, Yoshida T, Randall J.D, Chow G, Sarang S.S, Jensen R.V, Gullans S.R. DNA Microarray Analysis of Complex Biologic Processes, Journal of the American Society of Nephrology, 2001, 12, 1072–1078PubMedGoogle Scholar
  23. [23]
    Murphy D., Gene Expression Studies Using Microarrays: Principles, Problems, And Prospects, Adv Physiol Educ, 2002,26, 256–270PubMedGoogle Scholar
  24. [24]
    Silander K, Axelsson T, Wid′en E, Dahlgren A, Palotie A, Syvänen A.C, Analysis of Genetic Variation in the GenomEUtwin Project, Twin Research, 2003, 6, 391–398.PubMedCrossRefGoogle Scholar
  25. [25]
    Syvänen A.C., Toward genome-wide SNP genotyping, Nature Genetics, 2005, 37, S5–S10.PubMedCrossRefGoogle Scholar
  26. [26]
    Pastinen T, Raitio M, Lindroos K, Tainola P, Peltonen L, Syvänen A.C, A System for Specific, High-throughput Genotyping by Allele-specific Primer Extension on Microarrays, Genome Research, 2000, 10, 1031–1042PubMedCrossRefGoogle Scholar
  27. [27]
    O’Meara D, Ahmadian A, Odeberg J, Lundeberg J., SNP typing by apyrase-mediated allele-specific primer extension on DNA microarrays, Nucleic Acids Research, 2002, 30, e75PubMedCrossRefGoogle Scholar
  28. [28]
    Jain K.K., Lab-on-Chip and Microarrays, Pharmacogenomics, Lab-on-Chip and Microarrays CHI’s 3rd Annual Conference, 2001, 2, 73–77Google Scholar
  29. [29]
    Chen Z.J, Tew K.D., Amplified Differential Gene Expression Microarray, In: Humana Press, 2004, 95–106Google Scholar
  30. [30]
    Matsuzaki H, Loi H, Dong S, Tsai Y.Y, Fang J, Law J, et al., Parallel Genotyping of Over 10,000 SNPs Using a One-Primer Assay on a High-Density Oligonucleotide Array, Genome Research, 2004, 14, 414–425PubMedCrossRefGoogle Scholar
  31. [31]
    Napoli C, Lerman L.O, Sica V, Lerman A, Tajana G, de Nigris F., Microarray analysis: a novel research tool for cardiovascular scientists and physicians, Heart, 2003, 89, 597–604PubMedCrossRefGoogle Scholar
  32. [32]
    Pastinen T, Perola M, Niini P, Terwilliger J, Salomaa V, Vartiainen E, et al., Array-based multiplex analysis of candidate genes reveals two independent and additive genetic risk factors for myocardial infarction in the Finnish population, Human Molecular Genetics, 1998, 7, 1453–1462PubMedCrossRefGoogle Scholar
  33. [33]
    Dzau V.J, Japanese Circulation Society, Cardiovascular Disease in the Post-Genomic Era, 2001, http://www.j-circ.or.jp/english/sessions/reports/65th-ss/dzau.htm
  34. [34]
    Kwok P Y, Gu Z., Single nucleotide polymorphism libraries: why and how are we building them?, Mol Med Today, 1999, 5, 538–543PubMedCrossRefGoogle Scholar
  35. [35]
    Barrans J.D, Stamatiou D, Liew C., Construction of Human cardiovascular cDNA microarray: portrait of the failing heart, Biochem Biophys Res Comm, 2001, 280, 964–969PubMedCrossRefGoogle Scholar
  36. [36]
    Barrans J.D, Allen P.D, Stamatiou D, Dzau V.J, Liew C-C, Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray, Am J Pathol, 2002, 160, 2035–2043PubMedGoogle Scholar
  37. [37]
    Chaudhary A.G, Alqahtani M.H, Abuzenadah A, Gari M, Al-Sofyani A.A, Al-Aama J.Y., et al., Mutation analysis in Saudi Duchenne and Becker muscular dystrophy patients using multiplex PCR, Arch Med Sci, 2008, 4, 16–21Google Scholar
  38. [38]
    Qi L, Genetic effects, gene-lifestyle interactions, and type 2 diabetes, Cent Eur J Med 2008, 3, 1–7CrossRefGoogle Scholar
  39. [39]
    Boncler M, Gresner P, Nocun M, Rywaniak J, Dolnik M, Rysz J., et al., Elevated cholesterol reduces acetylsalicylic acid-mediated platelet acetylation, Biochim Biophys Acta, 2007, 1770, 1651–1659PubMedGoogle Scholar
  40. [40]
    Stavljenić-Rukavina A, Genetics of cardiovascular disease, eJIFCC, 2003,14Google Scholar
  41. [41]
    Topol E.J, McCarthy J, Gabriel S, Moliterno D.J, Rogers W.J, Newby L.K, et al., for the GeneQuest Investigators and Collaborators, Single nucleotide polymorphisms in multiple novel thrombospondin genes may be associated with familial premature myocardial infarction, Circulation, 2001,104,2641–2644PubMedCrossRefGoogle Scholar
  42. [42]
    Cheek D.J, Cesan A., Genetic Predictors of Cardiovascular Disease: The Use of Chip Technology, J. Cardiovasc. Nurs., 2003, 18, 50–56PubMedCrossRefGoogle Scholar
  43. [43]
    Tobin M.D, Braund P.S, Burton P.R, Thompson J.R, Steeds R, Channer K, et al., Genotypes and haplotypes predisposing to myocardial infarction: a multilocus case-control study, Eur. Heart J., 2004, 25, 459–467PubMedCrossRefGoogle Scholar
  44. [44]
    Sanghera D.K, Aston C.E, Saha N, Kamboh M.I., DNA Polymorphisms in Two Paraoxonase Genes (PON1 and PON2) Are Associated with the Risk of Coronary Heart Disease, Am J Hum Genet, 1998, 62, 36–44PubMedCrossRefGoogle Scholar
  45. [45]
    Chen Q, Reis S.E, Kammerer C.M, McNamara D.M, Holubkov R, Sharaf B.L, Sopko G, Pauly D.F, Merz C.N, Kamboh M.I, WISE Study Group., Association between the Severity of Angiographic Coronary Artery Disease and Paraoxonase Gene Polymorphisms in the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study, Am J Hum Genet, 2003, 72, 13–22PubMedCrossRefGoogle Scholar
  46. [46]
    Lawlor D.A, Day I.N.M, Gaunt T.R, Hinks L.J, Briggs P.J, Kiessling M, et al., The association of the PON1 Q192R polymorphism with coronary heart disease: findings from the British Women’s Heart and Health cohort study and a meta-analysis, BMC Genetics, 2004, 5:17PubMedCrossRefGoogle Scholar
  47. [47]
    Hinds D.A, Stuve L.L, Nilsen G.B, Halperin E, Eskin E, Ballinger D.G, et al. Whole-Genome Patterns of Common DNA Variation in Three Human Populations, Science 2005, 307, 1072–1079PubMedCrossRefGoogle Scholar
  48. [48]
    Reszka E, Jegier B, Wasowicz W, Lelonek M, Banach M, Jaszewski R., Detection of infectious agents by polymerase chain reaction in human aortic wall, Cardiovasc. Pathol., 2008, 17, 297–302.PubMedCrossRefGoogle Scholar
  49. [49]
    Meldrum D., Automation for Genomics, Part Two: Sequencers, Microarrays, and Future Trends. Review, Genome Res., 2000, 10, 1288–1303.PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Nephrology, Hypertension and Family MedicineMedical University of LodzLodzPoland
  2. 2.Departament of Biotechnological MedicineMedical University of LodzLodzPoland

Personalised recommendations