Central European Journal of Medicine

, Volume 3, Issue 1, pp 47–53 | Cite as

Comparative X-Ray study of galantamine and tacrine on the evacuatory function of rat gastrointestinal tract

  • Athanas D. Kristev
  • Vladimir N. Sirakov
  • Valentin I. Turiiski
  • Damianka P. Getova
  • Kichka G. Velkova
Research Article
  • 35 Downloads

Abstract

A The acetylcholinesterase inhibitors galantamine and tacrine are used to treat Alzheimer’s disease. However, these compounds also affect the gastrointestinal (GI) tract. Here, we compared and analyzed both the effects of galantamine-and tacrine on the evacuatory kinetics of the GI tract in rats. Rats were untreated (n=15) or treated with galantamine (one daily dose of 1 mg/kg per os for 21 days; n=17) or tacrine (one daily dose of 0.5 mg/kg per os for 21 days; n=13) and evacuatory kinetics were assessed using radiological methods. Galantamine initially slowed and then accelerated evacuation, which is characteristic of the majority of cholinesterase inhibitors and is a result of the endogenous acetylcholine accumulated in the GI tissues. In the tacrine-treated rats the contrast medium was kept in the stomach and cecum and its evacuation time was reliably increased. These results indicate that when administered for 20 days, galantamine and tacrine have different effects on motor and evacuatory function in the GI tract of rats, because at certain levels of the tract the tacrine-action is dominated by specific non-cholinergic and non-anticholinesterase mechanisms.

Keywords

Gastrointestinal tract Evacuatory kinetics Galantamine Tacrine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Rakonczay Z., Potencies and selectivity of inhibitors of acetylcholinesterase and its molecular forms in normal and Alzheimer’s disease brain, Acta Biol. Hung., 2003, 54, 183–189PubMedCrossRefGoogle Scholar
  2. [2]
    Wong W.J., Liu C.H., Fuh J.L., Wang S.J., Hsu L.C., Wang P.N., et al., Double-blind, placebo-controlled study of tacrine in Chinese patients with Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 1999, 10, 289–294PubMedCrossRefGoogle Scholar
  3. [3]
    Scott L.J., Goa K.L., Galantamine: a review of its use in Alzheimer’s disease, Drugs, 2000, 60, 1095–1122PubMedCrossRefGoogle Scholar
  4. [4]
    Corey-Bloom J., Galantamine: a review of its use in Alzheimer’s disease and vascular dementia, Int. J. Clin. Pract., 2003, 57, 219–223PubMedGoogle Scholar
  5. [5]
    Raskind M.A., Sadowsky C.H., Sigmund W.R., Beitler P.J., Auster S.B., Effect of tacrine on language, praxis, and noncognitive behavioral problems in Alzheimer disease, Arch. Neurol., 1997, 54, 836–840PubMedGoogle Scholar
  6. [6]
    Zarotsky V., Sramek J.J., Cutler N.R., Galantamine hydrobromide: an agent for Alzheimer’s disease, Am. J. Health. Syst. Pharm., 2003, 60, 446–452PubMedGoogle Scholar
  7. [7]
    Maelicke A., Allosteric modulation of nicotinic receptors as a treatment strategy for Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 2000, 11, 11–18PubMedCrossRefGoogle Scholar
  8. [8]
    Darvesh S., Walsh R., Kumar R., Caines A., Roberts S., Magee D., et al., Inhibition of Human Cholinesterases by Drugs Used to Treat Alzheimer Disease, Alzheimer Dis. Assoc. Disord., 2003, 17, 117–126PubMedCrossRefGoogle Scholar
  9. [9]
    Stemmelin J., Cassel J., Will J.C., Kelche B.C., Sensitivity to cholinergic drug treatments of aged rats with variable degrees of spatial memory impairment, Behav. Brain Res., 1999, 98, 53–66PubMedCrossRefGoogle Scholar
  10. [10]
    Ventura M., Sternon J., Therapeutic results: tacrine, Rev. Med. Brux., 1997, 18, 394–397PubMedGoogle Scholar
  11. [11]
    Hunter A., Murray T., Jones J., Cross A., Green A., The cholinergic pharmacology of tetrahydroaminoacridine in vivo and in vitro, Br. J. Pharmacol., 1989, 98, 79–86PubMedGoogle Scholar
  12. [12]
    Snape F., Misra A., Murray T., De Souza R., Williams J., Cross A., et al., A comparative study in rats of the in vitro and in vivo pharmacology of the acetylcholinesterase inhibitors tacrine, donepezil and NXX-066, Neuropharmacol., 1999, 38, 181–193CrossRefGoogle Scholar
  13. [13]
    Flynn D., Mash D., Multiple in vitro interactions with and differential in vivo regulation of muscarinic receptor subtypes by tetrahydroaminoacridine, J. Pharmacol. Exp. Ther., 1989, 250, 573–581PubMedGoogle Scholar
  14. [14]
    Summers W., Majovski L., Marsh G., Tachiki K., Kling A., Oral tetrahydro-aminoacridine in long-term treatment of senile dementia, Alzheimer type, N. Engl. J. Med., 1986, 315, 1241–1245PubMedCrossRefGoogle Scholar
  15. [15]
    Dolezal V., Lisa V., Tucek S., Effect of tacrine on intracellular calcium in cholinergic SN56 neuronal cells, Brain Res., 1997, 769, 219–224PubMedCrossRefGoogle Scholar
  16. [16]
    Davis U.L., Powchik P., Tacrine, Lancet, 1995, 345, 625–630PubMedCrossRefGoogle Scholar
  17. [17]
    Nordberg A., Svensson A.L., Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology, Drug Safety., 1999, 20, 146Google Scholar
  18. [18]
    Sramek J.J., Frackiewicz E.J., Cutler N.R., Review of acetylcholinesterase inhibitor galantamine, Exp. Opin. Invest. Drugs, 2000, 9, 2393–2402CrossRefGoogle Scholar
  19. [19]
    Poirier J., Evidence that the clinical effects of cholinesterase inhibitors are related to potency and targeting of action, Int. J. Clin. Pract. 2002, 127, 6–19Google Scholar
  20. [20]
    Fulton B., Benfield P., Galanthamine, Drugs Aging., 1996, 9, 60–67PubMedCrossRefGoogle Scholar
  21. [21]
    Cummings J.L., Use of cholinesterase inhibitors in clinical practice: evidence-based recommendations, Am. J. Geriatr. Psych., 2003, 11, 131–145CrossRefGoogle Scholar
  22. [22]
    Gerthoffer W.T., Signal-transduction pathways that regulate visceral smooth muscle function. III. Coupling of muscarinic receptors to signaling kinases and effector proteins in gastrointestinal smooth muscles, Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 288, G849–G853PubMedCrossRefGoogle Scholar
  23. [23]
    Turiiski V.I., Krustev A.D., Sirakov V.N., Getova D.P., In vivo and in vitro study of the influence of the anticholinesterase drug galantamine on motor and evacuative functions of rat gastrointestinal tract, Eur. J. Pharmacol., 2004, 498, 233–239PubMedCrossRefGoogle Scholar
  24. [24]
    Barnes C.A., Meltzer J., Houston F., Orr G., McGann K., Wenk G.L., Chronic treatment of old rats with donepezil or galantamine: effects on memory, hippocampal plasticity and nicotinic receptors, Neuroscience, 2000, 99, 17–23PubMedCrossRefGoogle Scholar
  25. [25]
    Maelicke A., Samochocki M., Jostock R., Fehrenbacher A., Ludwig J., Albuquerque E.X., et al., Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease, Biol. Psych, 2001, 49, 279–288CrossRefGoogle Scholar
  26. [26]
    Coyle J., Kershaw P., Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer’s disease, Biol. Psych., 2001, 49, 289–299CrossRefGoogle Scholar
  27. [27]
    Vizi E.S., Kobayashi O., Torocsik A., Kinjo M., Nagashima H., Manabe N., et al., Heterogeneity of presynaptic muscarinic receptors involved in modulation of transmitter release, Neuroscience, 1989, 31, 1259–267CrossRefGoogle Scholar
  28. [28]
    Brookes S.J., Neuronal nitric oxide in the gut, J. Gastroenterol. Hepatol., 1993, 8, 590–603PubMedGoogle Scholar
  29. [29]
    Jeyarasasingam G., Yeluashvili M., Quik M., Tacrine, a reversible acetylcholinesterase inhibitor, induces myopathy, Neuroreport, 2000, 11, 1173–1176PubMedCrossRefGoogle Scholar
  30. [30]
    Kristev A.D., Argirova M.D., Getova D.P., Turiiski V.I., Prissadova N.A., Calcium-independent tacrine-induced relaxation of rat gastric corpus smooth muscles, Can. J. Physiol. Pharmacol., 2006, 84, 1133–1138CrossRefGoogle Scholar
  31. [31]
    Turiiski V., Argirova M., Krastev A., Non-anticholinesterase, non-cholinergic effect of tacrine on gastrointestinal smooth muscle tissues of rat, Folia Medica, 2005, 57, 45–51Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Athanas D. Kristev
    • 1
  • Vladimir N. Sirakov
    • 2
  • Valentin I. Turiiski
    • 1
  • Damianka P. Getova
    • 3
  • Kichka G. Velkova
    • 2
  1. 1.Department of BiophysicsMedical University of PlovdivBulgaria
  2. 2.Department of Image Diagnostic, Radiology and Nuclear MedicineMedical University of PlovdivBulgaria
  3. 3.Department of Pharmacology, Clinical Pharmacology and Drug ToxicologyMedical University of PlovdivBulgaria

Personalised recommendations