Central European Journal of Medicine

, Volume 3, Issue 1, pp 1–7 | Cite as

Genetic effects, gene-lifestyle interactions, and type 2 diabetes

Review Article


Type 2 diabetes has become a major public health challenge worldwide. It is now widely accepted that genetic components affect the development of type 2 diabetes, in concert with environmental factors such as lifestyle and diet. Traditional linkage mapping, positional cloning, and candidate gene-based association studies have identified a few genetic variants in genes such as TCF7L2, PPARG, and KCNJ11 that are reproducibly related to the risk of type 2 diabetes. To date, about ten genome-wide association (GWA) studies have been published. These studies discovered new susceptibility genes for type 2 diabetes and provide novel insight into the diabetes etiology. In addition, data especially from lifestyle intervention trials display promising evidence that the genetic variants may interact with changes of dietary habit and physical activity in predisposing to type 2 diabetes. The gene-lifestyle interactions merit extensive exploration in large, prospective studies. The findings from these areas will substantially improve the prediction and prevention of type 2 diabetes.


Genetics Gene-environment interactions And type 2 diabetes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wild S., Roglic G., Green A., Sicree R., King H., Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes Care, 2004, 27, 1047–1053PubMedCrossRefGoogle Scholar
  2. [2]
    Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D., et al., A genome-wide association study identifies novel risk loci for type 2 diabetes, Nature, 2007, 445, 881–885PubMedCrossRefGoogle Scholar
  3. [3]
    Scott L.J., Mohlke K.L., Bonnycastle L.L., Willer C.J., Li Y., Duren W.L., et al., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants, Science, 2007, 316, 1341–1345PubMedCrossRefGoogle Scholar
  4. [4]
    Salonen J.T., Uimari P., Aalto J.M., Pirskanen M., Kaikkonen J., Todorova B., et al., Type 2 diabetes whole-genome association study in four populations: the DiaGen consortium, Am. J. Hum. Genet. 2007, 81, 338–345PubMedCrossRefGoogle Scholar
  5. [5]
    Zeggini E., Weedon M.N., Lindgren C.M., Frayling T.M., Elliott K.S., Lango H., et al., Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes, Science, 2007, 316, 1336–1341PubMedCrossRefGoogle Scholar
  6. [6]
    Hunter D.J., Gene-environment interactions in human diseases, Nat. Rev. Genet., 2005, 6, 287–298PubMedCrossRefGoogle Scholar
  7. [7]
    Knowler W.C., Pettitt D.J., Savage P.J., Bennett P.H., Diabetes incidence in Pima indians: contributions of obesity and parental diabetes, Am. J. Epidemiol., 1981, 113, 144–156PubMedGoogle Scholar
  8. [8]
    Harris M.I., Hadden W.C., Knowler W.C., Bennett P.H., Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in U.S. population aged 20–74 yr., Diabetes, 1987, 36, 523–534PubMedCrossRefGoogle Scholar
  9. [9]
    Mitchell B.D., Valdez R., Hazuda H.P., Haffner S.M., Monterrosa A., Stern M.P., Differences in the prevalence of diabetes and impaired glucose tolerance according to maternal or paternal history of diabetes, Diabetes Care, 1993, 16, 1262–1267PubMedCrossRefGoogle Scholar
  10. [10]
    Thomas F., Balkau B., Vauzelle-Kervroedan F., Papoz L., Maternal effect and familial aggregation in NIDDM. The CODIAB Study. CODIAB-INSERMZENECA Study Group, Diabetes, 1994, 43, 63–67PubMedCrossRefGoogle Scholar
  11. [11]
    De Silva S.N., Weerasuriya N., De Alwis N.M., De Silva M.W., Fernando D.J., Excess maternal transmission and familial aggregation of Type 2 diabetes in Sri Lanka. Diabetes Res. Clin. Pract. 2002, 58, 173–177PubMedCrossRefGoogle Scholar
  12. [12]
    Arfa I., Abid A., Malouche D., Ben Alaya N., Azegue T.R., Mannai I., et al., Familial aggregation and excess maternal transmission of type 2 diabetes in Tunisia, Postgrad. Med. J., 2007, 83, 348–351PubMedCrossRefGoogle Scholar
  13. [13]
    Viswanathan M., McCarthy M.I., Snehalatha C., Hitman G.A., Ramachandran A., Familial aggregation of type 2 (non-insulin-dependent) diabetes mellitus in south India; absence of excess maternal transmission, Diabet. Med., 1996, 13, 232–237PubMedCrossRefGoogle Scholar
  14. [14]
    Valdez R., Yoon P.W., Liu T., Khoury M.J., Family history and prevalence of diabetes in the US population: 6-year results from the National Health and Nutrition Examination Survey (NHANES, 1999 2004), Diabetes, 2007, (in press)Google Scholar
  15. [15]
    Newman B., Selby J.V., King M.C., Slemenda C., Fabsitz R., Friedman G.D., Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins, Diabetologia, 1987, 30, 763–768PubMedCrossRefGoogle Scholar
  16. [16]
    Barnett A.H., Eff C., Leslie R.D., Pyke D.A., Diabetes in identical twins. A study of 200 pairs, Diabetologia, 1981, 20, 87–93PubMedCrossRefGoogle Scholar
  17. [17]
    Gottlieb M.S., Root H.F., Diabetes mellitus in twins, Diabetes, 1968, 17, 693–704PubMedGoogle Scholar
  18. [18]
    Kaprio J., Tuomilehto J., Koskenvuo M., Romanov K., Reunanen A., Eriksson J., et al., Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland, Diabetologia, 1992, 35, 1060–1067PubMedCrossRefGoogle Scholar
  19. [19]
    Poulsen P, Kyvik K.O., Vaag A., Beck-Nielsen H., Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance—a population-based twin study, Diabetologia, 1999, 42, 139–145PubMedCrossRefGoogle Scholar
  20. [20]
    Barroso I., Genetics of Type 2 diabetes, Diabet. Med., 2005, 22, 517–535PubMedCrossRefGoogle Scholar
  21. [21]
    Babenko A.P., Polak M., Cave H., Busiah K., Czernichow P., Scharfmann R., et al., Activating mutations in the ABCC8 gene in neonatal diabetes mellitus, N. Engl. J. Med., 2006, 355, 456–466.PubMedCrossRefGoogle Scholar
  22. [22]
    Gloyn A.L., Pearson E.R., Antcliff J.F., Proks P., Bruining G.J., Slingerland A.S., et al., Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes., N. Engl. J. Med., 2004, 350, 1838–1849PubMedCrossRefGoogle Scholar
  23. [23]
    van den Ouweland J.M., Lemkes H.H., Trembath R.C., Ross R., Velho G., Cohen D., et al., Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associates with a single point mutation in the mitochondrial tRNA(Leu(UUR)) gene, Diabetes, 1994, 43, 746–751PubMedCrossRefGoogle Scholar
  24. [24]
    Fajans S.S., Bell G.I., Polonsky K.S., Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young, N. Engl. J. Med., 2001, 345, 971–980PubMedCrossRefGoogle Scholar
  25. [25]
    Collins F.S., Positional cloning: let’s not call it reverse anymore, Nat. Genet., 1992, 1, 3–6PubMedCrossRefGoogle Scholar
  26. [26]
    Hanis C.L., Boerwinkle E., Chakraborty R., Ellsworth D.L., Concannon P., Stirling B., et al., A genome-wide search for human non-insulindependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2, Nat. Genet., 1996, 13, 161–166PubMedCrossRefGoogle Scholar
  27. [27]
    Horikawa Y., Oda N., Cox N.J., Li X., Orho-Melander M., Hara M., et al., Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus, Nat. Genet., 2000, 26, 163–175PubMedCrossRefGoogle Scholar
  28. [28]
    Grant S.F., Thorleifsson G., Reynisdottir I., Benediktsson R., Manolescu A., Sainz J., et al., Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes, Nat. Genet., 2006, 38, 320–323PubMedCrossRefGoogle Scholar
  29. [29]
    Reynisdottir I., Thorleifsson G., Benediktsson R., Sigurdsson G., Emilsson V., Einarsdottir A.S., et al., Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2, Am. J. Hum. Genet., 2003, 73, 323–335PubMedCrossRefGoogle Scholar
  30. [30]
    Cauchi S., El Achhab Y., Choquet H., Dina C., Krempler F., Weitgasser R., et al., TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis, J. Mol. Med., 2007, 85, 777–782PubMedCrossRefGoogle Scholar
  31. [31]
    Risch N., Merikangas K., The future of genetic studies of complex human diseases, Science, 1996, 273, 1516–1517PubMedCrossRefGoogle Scholar
  32. [32]
    Watanabe R.M., Black M.H., Xiang A.H., Allayee H., Lawrence J.M., Buchanan T.A., Genetics of gestational diabetes mellitus and type 2 diabetes, Diabetes Care, 2007, 30, Suppl 2, S134–140PubMedCrossRefGoogle Scholar
  33. [33]
    Newton-Cheh C., Hirschhorn J.N., Genetic association studies of complex traits: design and analysis issues, Mutat. Res., 2005, 573, 54–69PubMedGoogle Scholar
  34. [34]
    Ludovico O., Pellegrini F., Di Paola R., Minenna A., Mastroianno S., Cardellini M., et al., Heterogeneous effect of peroxisome proliferatoractivated receptor gamma2 Ala12 variant on type 2 diabetes risk, Obesity (Silver Spring), 2007, 15, 1076–1081CrossRefGoogle Scholar
  35. [35]
    Nielsen E.M., Hansen L., Carstensen B., Echwald S.M., Drivsholm T., Glumer C., et al., The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes, Diabetes, 2003, 52, 573–577PubMedCrossRefGoogle Scholar
  36. [36]
    Winckler W., Weedon M.N., Graham R.R., McCarroll S.A., Purcell S., Almgren P., et al., Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes, Diabetes, 2007, 56, 685–693PubMedCrossRefGoogle Scholar
  37. [37]
    Gudmundsson J., Sulem P., Steinthorsdottir V., Bergthorsson J.T., Thorleifsson G., Manolescu A., et al., Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes, Nat. Genet., 2007, 39, 977–983PubMedCrossRefGoogle Scholar
  38. [38]
    Jorgenson E., Witte J.S., A gene-centric approach to genome-wide association studies, Nat. Rev. Genet., 2006, 7, 885–891PubMedCrossRefGoogle Scholar
  39. [39]
    Saxena R., Voight B.F., Lyssenko V., Burtt N.P., de Bakker P.I., Chen H., et al., Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels, Science, 2007, 316, 1331–1336PubMedCrossRefGoogle Scholar
  40. [40]
    Steinthorsdottir V., Thorleifsson G., Reynisdottir I., Benediktsson R., Jonsdottir T., Walters G.B., et al., A variant in CDKAL1 influences insulin response and risk of type 2 diabetes, Nat. Genet., 2007, 39, 770–775PubMedCrossRefGoogle Scholar
  41. [41]
    Florez J.C., Manning A.K., Dupuis J., McAteer J., Irenze K., Gianniny L., et al., A 100k Genome-Wide Association Scan for Diabetes and Related Traits in the Framingham Heart Study: Replication and Integration with Other Genome-Wide Datasets, Diabetes 2007, (in press)Google Scholar
  42. [42]
    Rampersaud E., Damcott C.M., Fu M., Shen H., McArdle P., Shi X., et al., Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish: Evidence for replication from diabetesrelated quantitative traits and from independent populations, Diabetes, 2007, (in press)Google Scholar
  43. [43]
    Hanson R.L., Bogardus C., Duggan D., Kobes S., Knowlton M., Infante A.M., A Search for Variants Associated with Young-Onset Type 2 Diabetes in American Indians in a 100k Genotyping Array, Diabetes, 2007, (in press)Google Scholar
  44. [44]
    Nemoto M., Sasaki T., Deeb S.S., Fujimoto W.Y., Tajima N., Differential effect of PPARgamma2 variants in the development of type 2 diabetes between native Japanese and Japanese Americans, Diabetes Res. Clin. Pract., 2002, 57, 131–137PubMedCrossRefGoogle Scholar
  45. [45]
    Laaksonen D.E., Lindstrom J., Lakka T.A., Eriksson J.G., Niskanen L., Wikstrom K., et al., Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study, Diabetes, 2005, 54, 158–165PubMedCrossRefGoogle Scholar
  46. [46]
    Siitonen N., Lindstrom J., Eriksson J., Valle T.T., Hamalainen H., Ilanne-Parikka P., et al., Association between a deletion/insertion polymorphism in the alpha2B-adrenergic receptor gene and insulin secretion and Type 2 diabetes. The Finnish Diabetes Prevention Study, Diabetologia, 2004, 47, 1416–1424PubMedCrossRefGoogle Scholar
  47. [47]
    Lindi V.I., Uusitupa M.I., Lindstrom J., Louheranta A., Eriksson J.G., Valle T.T., et al., Association of the Pro12Ala polymorphism in the PPAR-gamma2 gene with 3-year incidence of type 2 diabetes and body weight change in the Finnish Diabetes Prevention Study, Diabetes, 2002, 51, 2581–2586PubMedCrossRefGoogle Scholar
  48. [48]
    Laukkanen O., Lindstrom J., Eriksson J., Valle T.T., Hamalainen H., Ilanne-Parikka P., et al., Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study, Diabetes, 2005, 54, 2256–2260PubMedCrossRefGoogle Scholar
  49. [49]
    Salopuro T., Pulkkinen L., Lindstrom J., Eriksson J.G., Valle T.T., Hamalainen H., et al. Genetic variation in leptin receptor gene is associated with type 2 diabetes and body weight: The Finnish Diabetes Prevention Study, Int. J. Obes. (Lond.), 2005, 29, 1245–1251CrossRefGoogle Scholar
  50. [50]
    Kubaszek A., Pihlajamaki J., Komarovski V., Lindi V., Lindstrom J., Eriksson J., et al., Promoter polymorphisms of the TNF-alpha (G-308A) and IL-6 (C-174G) genes predict the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study, Diabetes, 2003, 52, 1872–1876PubMedCrossRefGoogle Scholar
  51. [51]
    Mager U., Lindi V., Lindstrom J., Eriksson J.G., Valle T.T., Hamalainen H., et al., Association of the Leu72Met polymorphism of the ghrelin gene with the risk of Type 2 diabetes in subjects with impaired glucose tolerance in the Finnish Diabetes Prevention Study, Diabetes Med., 2006, 23, 685–689CrossRefGoogle Scholar
  52. [52]
    Florez J.C., Jablonski K.A., Bayley N., Pollin T.I., de Bakker P.I., Shuldiner A.R., et al., TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program, N. Engl. J. Med., 2006, 355, 241–250PubMedCrossRefGoogle Scholar
  53. [53]
    Nelson T.L., Fingerlin T.E., Moss L.K., Barmada M.M., Ferrell R.E., Norris J.M., Association of the peroxisome proliferator-activated receptor gamma gene with type 2 diabetes mellitus varies by physical activity among non-Hispanic whites from Colorado, Metabolism, 2007, 56, 388–393PubMedCrossRefGoogle Scholar
  54. [54]
    Soriguer F., Morcillo S., Cardona F., Rojo-Martinez G., de la Cruz Almaraz M., Ruiz de Adana Mde L., et al., Pro12Ala polymorphism of the PPARG2 gene is associated with type 2 diabetes mellitus and peripheral insulin sensitivity in a population with a high intake of oleic acid, J. Nutr., 2006, 136, 2325–2330PubMedGoogle Scholar
  55. [55]
    Qi L., Meigs J., Manson J.E., Ma J., Hunter D., Rifai N., et al., HFE genetic variability, body iron stores, and the risk of type 2 diabetes in U.S. women, Diabetes, 2005, 54, 3567–3572PubMedCrossRefGoogle Scholar
  56. [56]
    Beulens J.W., Rimm E.B., Hendriks H.F., Hu F.B., Manson J.E., Hunter D.J., et al., Alcohol consumption and type 2 diabetes: influence of genetic variation in alcohol dehydrogenase, Diabetes, 2007, 56, 2388–2394PubMedCrossRefGoogle Scholar
  57. [57]
    Frayling T.M., Genome-wide association studies provide new insights into type 2 diabetes aetiology, Nat. Rev. Genet., 2007, 8, 657–662PubMedCrossRefGoogle Scholar
  58. [58]
    Bermejo J.L., Hemminki K., Gene-environment studies: any advantage over environmental studies? Carcinogenesis, 2007, 28, 1526–1532PubMedCrossRefGoogle Scholar
  59. [59]
    Willett W.C., Balancing life-style and genomics research for disease prevention. Science, 2002, 296, 695–698PubMedCrossRefGoogle Scholar
  60. [60]
    McCarroll S.A., Altshuler D.M., Copy-number variation and association studies of human disease, Nat. Genet., 2007, 39, S37–42PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Departments of Nutrition and EpidemiologyHarvard School of Public Health, and Channing LaboratoryBostonUSA

Personalised recommendations