Central European Journal of Medicine

, Volume 2, Issue 4, pp 417–429 | Cite as

Variation in the analgesic activity of opioid peptide fragments in correlation with the amino acidic sequence

  • Irina M. Jaba
  • Bogdan Tamba
  • Georgios Manolidis
  • Ostin C. Mungiu
Research Article


Short fragments of typical or atypical opioid peptides, lacking the whole four amino acid sequence of the enkephalin motif, can preserve a significant percentage of the analgesic activity of the original peptides. This paper investigates the importance of the amino-acidic sequence of minimum structure typical opioid peptides for the analgesic activity. Different groups of rats were treated with 1) Gly-Tyr, 0.5 mg/rat i.t., 2) Tyr-Gly, 0.5 mg/rat i.t., 3) Tyr-Gly-Gly, 0.5 mg/rat i.t., 4) Gly-Gly-Phe-Leu, 0.5 mg/rat i.t., 5) Leu-enkephalin, 0.5 mg/rat i.t.. The analgesic effect of the tested substances was appreciated through the nociceptive threshold for thermal (plantar test) and mechanical nociception (algesimetric test). Fragments of typical opioid peptides elicited antinociceptive activity only when a tyrosine residue was present at the N-terminal end of the amino-acidic sequence. The presence of Nterminal tyrosine provides affinity for the opioid receptors and significant analgesic activity. The intensity of the antinociceptive effect was directly proportional with the length of the amino-acidic sequence. The inhibition of the analgesic effect by previous administration of naloxone proves that this effect is mediated through the opioid system.


Analgesia amino acid sequence nociception opioid peptides tyrosine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O.C. Mungiu: “Repere fiziologice/Physiological landmarks”, In: O.C. Mungiu (Ed.), Tratat de algeziologie/ Algesiology Textbook, Polirom Publishing, Iasi, (2002), pp. 64–161.Google Scholar
  2. [2]
    I.M. Jaba, D. Vasincu, G. Manolidis, I. Haulica and O.C. Mungiu: “Experimental data regarding the implications of certain minimum structure enkephalin-like peptides in nociceptive processing”, Rom. J. Physiol., Vol. 41, (2004), pp. 119–126.PubMedGoogle Scholar
  3. [3]
    P.H. Janak and J.L. Martinez: “Only tyrosine-containing metabolites of [Leu]enkephalin impair active avoidance conditioning in mice”, Pharmacol. Biochem. Behav., Vol. 37, (1990), pp. 655–659.PubMedCrossRefGoogle Scholar
  4. [4]
    V.Y.H. Hook: “Protease Pathways in Peptide Neurotransmission and Neurodegenerative Diseases”, Cell. Mol. Neurobiol., Vol. 26, (2006), pp. 447–467.CrossRefGoogle Scholar
  5. [5]
    A.A. Houdi and G.R. Van Loon: “Haloperidol-induced increase in striatal concentration of the tripeptide, Tyr-Gly-Gly, provides an index of increased enkephalin release in vivo”, J. Neurochem., Vol. 54, (1990), pp. 1360–1366.PubMedCrossRefGoogle Scholar
  6. [6]
    G. Schulteis and J.L. Martinez: “[Leu]enkephalin and its metabolite, Tyr-Gly-Gly, impair active avoidance retention”, Pharmacol. Biochem. Behav., Vol. 42, (1992), pp. 523–527.PubMedCrossRefGoogle Scholar
  7. [7]
    H. Teschemacher: “Atypical opioid peptides”, In: A. Hertz (Ed.): Opioids I. Handbook of Experimental Pharmacology, Springer-Verlaag, Berlin, 1993, pp. 499–528.Google Scholar
  8. [8]
    P. Pattee, A.E. Ilie, S. Benyhe, T. Geza, A. Borsodi and S.R. Nagalla: “Cloning and characterization of Xen-dorphin prohormone from Xenopus laevis. A new opioid-like prohormone distinct from proenkephalin and prodynorphin”, J. Biol. Chem., Vol. 52, (2003), pp. 53098–53104.CrossRefGoogle Scholar
  9. [9]
    P. Melchiorri and L. Negri: “The dermorphin peptide family”, Gen. Pharmacol., Vol. 27, (1996), pp. 1099–1107.PubMedGoogle Scholar
  10. [10]
    G. Horvath, M. Szikszay, C. Tomboly and G. Benedek: “Antinociceptive effects of intrathecal endomorphin-1 and-2 in rats”, Life Sci., Vol. 65, (1999), pp. 2635–2641.PubMedCrossRefGoogle Scholar
  11. [11]
    H. Mizoguchi, L.F. Tseng, T. Suzuki, I. Sora and M. Narita: “Differential Mechanism of G-protein activation induced by endogenous miu-opioid peptides, endomorphin and beta-endorphin”, Jpn. J. Pharmacol., Vol. 89, (2002), pp. 229–234.PubMedCrossRefGoogle Scholar
  12. [12]
    B. Biondi, E. Giannini, L. Negri, P. Melchiorri, R. Lattanzi, F. Rosso, L. Ciocca and R. Rocchi: “Opioid Peptides: Synthesis and Biological Activity of New Endomorphin Analogues”, Int. J. Pept. Res. Ther., Vol. 12, (2006), pp. 145–151.CrossRefGoogle Scholar
  13. [13]
    R.J. Vavrek, L.H. Hsi, E.J. York, M.E. Hall and J.M. Stewart: “Minimum structure opioids-dipeptide and tripeptide analogs of the enkephalins”, Peptides, Vol. 2, (1981), pp. 303–308.PubMedCrossRefGoogle Scholar
  14. [14]
    M.G. Clemente, S. De Virgiliis., J.S. Kang, R. Macatagney, M.P. Musu, M.R. Di Pierro, S. Drago, M. Congia and A. Fasano: “Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function”, Gut, Vol. 52, (2003), pp. 218–223.PubMedCrossRefGoogle Scholar
  15. [15]
    M. Yoshikawa, M. Takahashi and S. Yang: “Delta opioid peptides derived from plant proteins”, Curr. Pharm. Design, Vol 9, (2003), pp. 1325–1330.CrossRefGoogle Scholar
  16. [16]
    I.E. Goldberg, G.C. Rossi, S.R. Letchworth, J.P. Mathis, J. Ryan-Moro, L. Leventhal, W. Su, D. Emmel, E.A. Bolan and G.W. Pasternak: “Pharmacological Characterisation of Endomorphin-1 and Endomorphin 2 in Mouse Brain”, J. Pharmacol. Exp. Ther., Vol 286, (1998), pp. 1007–1013.PubMedGoogle Scholar
  17. [17]
    S. Sakurada, T. Hayashi and M. Yuhki: “Differential Antinociceptive Effects Induced by Intrathecally-Administered Endomorphin-1 and Endomorphin 2 in Mice”, Jpn. J. Pharmacol., Vol. 89, (2002), pp. 221–223.PubMedCrossRefGoogle Scholar
  18. [18]
    T. Nishiyama and K. Hanaoka: “Reproducibility of the Drug Effects over Time on Chronic Lumbar Epidural Catheterization in Rats”, Anesth. Analg., Vol. 89, (1999), pp. 1492–1494.PubMedCrossRefGoogle Scholar
  19. [19]
    T. Yaksh and T.A. Rudy: “Chronic catheterization of the spinal subarachnoid space”, Physiol. Behav., Vol. 17, (1976), pp. 1031–1036.PubMedCrossRefGoogle Scholar
  20. [20]
    K. Hanif, K. Gupta, S. Gupta, Y.K. Gupta, S. Maiti and S. Pasha: “Chimeric peptide of met-enkephalin and FMRFa: effect of chlorination on conformation and analgesia”, Neurosci Lett., Vol. 403, (2006), pp. 131–135.PubMedCrossRefGoogle Scholar
  21. [21]
    A. Janecka, J. Fichna, M. Mirowski and T. Janecki: “Structure-activity relationship, conformation and pharmacology studies of morphiceptin analogues-selective mu-opioid receptor ligands”, Mini. Rev. Med. Chem., Vol. 2, (2002), pp. 565–572.PubMedCrossRefGoogle Scholar
  22. [22]
    A.W. Lipkowski, A. Misicka, D. Kosson, P. Kosson, M. Lachwa-From, A. Brodzik-Bienkowska and V.J. Hruby: “Biological properties of a new fluorescent biphalin fragment analogue”, Life Sci. Vol., 70, (2002) pp. 893–897.CrossRefGoogle Scholar
  23. [23]
    A. Misicka, A. Lipkowski, R. Horvath, P. Davis, F. Porreca, H.I. Yamamura and V.J. Hruby: “Structure-activity relationship of biphalin. The synthesis and biological activities of new analogues with modifications in positions 3 and 4”, Life Sci., Vol. 60, (1997), pp. 1263–1269.PubMedCrossRefGoogle Scholar
  24. [24]
    B. Baldelli, L. Vecchio, M.G. Bottone, G. Muzzonigro, M. Biggiogera and M. Malatesta: “The effect of the enkephalin DADLE on transcription does not depend on opioid receptors”, Histochem. Cell. Biol., Vol. 126, (2006), pp. 189–197.PubMedCrossRefGoogle Scholar
  25. [25]
    C. Sakurada: “Development of a New Analgesic Based on Metabolism of Endomorphin, an Endogenous Opioid Peptide”, Yakuga Zasshi, Vol. 124, (2004), pp. 549–554.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Irina M. Jaba
    • 1
  • Bogdan Tamba
    • 1
  • Georgios Manolidis
    • 1
  • Ostin C. Mungiu
    • 1
  1. 1.Center for the Study and Therapy of Pain, Faculty of Medicine“Gr. T. Popa” University of Medicine and PharmacyIasiRomania

Personalised recommendations