Skip to main content
Log in

Production of hairy root cultures of lettuce (Lactuca sativa L.)

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Hairy root cultures of lettuce (Lactuca sativa L.) were obtained by inoculation of cotyledonary leaves of in vitro lettuce seedlings (cvs. Nansen and Ljubljanska ledenka) with Agrobacterium rhizogenes A4M70GUS. Approximately in 96.7% cvs. Nansen and in 91.2% Ljubljanska ledenka inoculated explants produced hairy root when they were incubated on Murashige and Skoog (MS) half-strength medium without plant growth regulators. A total of 54% of all hairy root cultures expressed GUS activity. Every hairy root represented an independent transformation event. Line Ljubljanska ledenka 18 showed the highest biomass (5.5 times the biomass of control root). A PCR analysis of the genomic DNA confirmed the presence of marker and target genes in 15 hairy roots examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GUS:

ß-glucuronidase

MS:

Murashige and Skoog medium

X-Gluc:

5-bromo-4-chloro-3-indolyl-ß-D-glucuronide

References

  1. Curtis I., Genetic transformation-Agrobacterium, In: Davey M. R. and Anthony P. (Eds.) Plant Cell Culture, Essential Methods, 199–215, Wiley-Blackwell, 2010

    Google Scholar 

  2. FAO (2006): http://faostat.fao.org/faostat/sevlet/. Cited 20 April 2006.

  3. USDA (2005) Vegetables. Annual Summary 01.27.06. National Agricultural Statistics Service. http://usda.mannlib.cornell.edu/reports/nassr/fruit/pvgbban/. Cited 2006.

    Google Scholar 

  4. Veena V., Taylor G.C., Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell. Dev. Biol-Pl., 2007, 43, 383–403

    CAS  Google Scholar 

  5. Zdravković-Korać S., Muhovski Z., Druart P., Ćalić D., Radojević Lj., Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Rep., 2004, 22, 698–704

    Article  PubMed  Google Scholar 

  6. Giri A., Narasu M.L. (2000) Transgenic hairy roots. Recent trends and applications. Biotechnol. Adv., 2000, 18, 1–22

    Article  CAS  PubMed  Google Scholar 

  7. Guillon S., Trémouillaux-Guiller J., Pati P.K., Rideau M., Gantet P., Hairy root research: recent scenario and exciting prospects. Curr. Opin. Plant Biol., 2006, 9, 341–346

    Article  CAS  PubMed  Google Scholar 

  8. Ono N.N., Tian L., The multiplicity of hairy root cultures: Prolific possibilities. Plant Sci., 2011, 180, 439–466

    Article  CAS  PubMed  Google Scholar 

  9. Shih S.M.-H., Doran P.M., In vitro propagation of plant virus using different forms of plant tissue culture and modes of culture operations. J. Biotechnol., 2009, 143, 198–206

    Article  CAS  PubMed  Google Scholar 

  10. Coniglio M., S., Busto V. D., González P. S., Medina M. I., Milrad S., Agostini E., Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions. Chemosphere, 2008, 72, 1035–1042

    Article  CAS  PubMed  Google Scholar 

  11. Doran P.M., Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol. Bioeng., 2009, 103, 60–76

    Article  CAS  PubMed  Google Scholar 

  12. González P. S., Agostini E., Milrad S. R., Comparison of the removal of 2,4-dichlorophenol and phenol from polluted water, by peroxidases from tomato hairy roots, and protective effect of polyethylene glycol. Chemosphere., 2008, 70, 982–989

    Article  PubMed  Google Scholar 

  13. González P. S., Maglione G. A., Giordana M., Paisio C. E., Talano M. A., Agostini E., Evaluation of phenol detoxification by Brassica napus hairy roots, using Allium cepa test. Environ. Sci. Pollut. Res. 2012, 19, 482–491

    Article  Google Scholar 

  14. Suresh B., Ravishankar G.A., Phytoremediation — a novel and promising approach for environmental clean-up. Crit. Rev. Biotechnol., 2004, 24, 97–124

    Article  CAS  PubMed  Google Scholar 

  15. Sosa Alderete L.G., Ibáñez S.G., Agostini E., Medina M.I., Phytoremediation of Phenol at pilot scale by tobacco hairy roots. Int. J. Environ. Sci., 2012, 3, 398–407

    CAS  Google Scholar 

  16. Suza W., Harris R.S., Lorence A., Hairy roots: from high-value metabolite production to phytoremediation. Electron J. Int. Biosci., 2008, 3, 57–65

    Google Scholar 

  17. Lim W., Park J., Park S., Re-evaluation of the effects of growth regulators on callus induction and shoot regeneration in Agrobacterium-mediated transformation of lettuce. Acta Physiol. Plant., 2011, 33, 1631–1637

    CAS  Google Scholar 

  18. Pileggi M., Pereira A. A. M., Silva J. dos S., Pileggi S. A. V., Verma D. P. S., An Improved Method for Transformation of Lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance. Braz. Arch. Biol. Techn., 2001, 44, 191–196

    Article  CAS  Google Scholar 

  19. Ahmed B. M., Akhter M. S., Hossain M., Islam R., Choudhury T. A., Hannan M. M., Razvy M. A., Ahmad I., An efficient Agrobacterium-mediated genetic transformation method of lettuce (Lactuca sativa L.) with an aphidicidal gene, iPta (Pinellia ternata Agglutinin). Middle East J. Sci. Res., 2007, 2, 155–160

    Google Scholar 

  20. Matvieieva N. A., Vasylenko M. Y., Shakhovsky A. M., Kuchuk N. V., Agrobacterium-mediated transformation of lettuce (Lactuca sativa L.) with genes cording bacterial antigens from Mycobacterium tuberculosis. Cytol Genet., 2009, 43, 94–98

    Article  Google Scholar 

  21. Van Larebeke N., Genetello C.H., Hernalsteens J.P., De Picker A., Zaenen I., Messens, E., Van Montagu M., Shell J., Transfer of Ti plasmid between Agrobacterium strains by mobilization with the conjugative plasmid RP4. Mol. Genet., 1977, 152, 1119–1124

    Google Scholar 

  22. Jefferson R. A., Kavanagh T. A., Bevan M. W., GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J., 1987, 6, 3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Zhou X., Guangcheng C., Rufa L., Yongru S., Wenbin L., A rapid and efficient DNA extraction method of genus Fagopyrum for RAPD analysis. Proc IPBA, Rougla, 171–175, 1994.

    Google Scholar 

  24. Sretenović-Rajčić T., Ninković S., Miljuš-Đukić J., Vinterhalter B., Vinterhalter D., Agrobacterium rhizogenes-mediated transformation of Brassica oleracea var. sabauda and B. oleracea var. capitata. Bio Plantarum., 2006, 50, 525–530

    Article  Google Scholar 

  25. Milošević S., Subotić A., Cingel A. Jevremović S. and Ninković S. Efficient genetic transformation of Impatiens hawkerii Bull. (Balsamiaceae) using Agrobacterium rhizogenes. Arch. Biol. Sci., 2009, 61, 467–474

    Google Scholar 

  26. Sinkar V.P., Pythoud F., White F.F., Nester W.E. and Gordon P.M., rol A locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants. Gene. Dev., 1988, 2, 688–697

    Article  CAS  PubMed  Google Scholar 

  27. Christey M.C., Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev.-Pl., 2001, 37, 687–700

    CAS  Google Scholar 

  28. Yazaki K., Tanaka S., Matsuoka H., Sato F., Stable transformation of Lithospermum erythrorhizon by Agrobacterium rhizogenes and shikonin production of the transformants. Plant Cell Rep., 1998, 18, 214–219

    Article  CAS  Google Scholar 

  29. Krolicka A., Stanisyewska I., Bielawski K., Malinski E., Szafranek J., Lojkowska E., Establishment of hairy root cultures of Ammi majus. Plant Sci., 2001, 160, 259–264

    Article  CAS  PubMed  Google Scholar 

  30. Azlan G.J., Marziah M., Radzali M., Johari R., Establishment of Physalis minima hairy roots culture for the production of physalins. Plant Cell Tiss. Org., 2002, 69, 271–278

    Article  Google Scholar 

  31. Momčilović I., Grubišić D., Kojić M., Nešković M., Agrobacterium rhizogenes-mediated transformation of four Gentiana species. Plant Cell Tiss. Org. Cult., 1997, 50, 1–6

    Article  Google Scholar 

  32. Gelvin S. B., Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant. Phys., 2000, 51, 223–256

    Article  CAS  Google Scholar 

  33. Bulgakov V. P., Functions of rol genes in plant secondary metabolism, Biotechol. Adv., 2008, 26, 318–324

    Article  CAS  Google Scholar 

  34. Binns A.N., Costantino P., The Agrobacterium oncogenes. In: Spaink H., Kondorosi A., Hooykaas P.J.J. (Eds.), The Rhizobiaceae, 251–266 Kluwer Press, Holland, Dordrecht, 1998

    Chapter  Google Scholar 

  35. Bonhomme V., Laurain-Mattar D., Lacoux J., Fliniaux M.A., Jacquin-Dubreuil A., Tropane alkaloid production by hairy roots of Atropa belladona obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rol A, B, C genes only. J. Biotech., 2000, 81, 151–158

    Article  CAS  Google Scholar 

  36. Tanaka N., Fujikawa Y., Aly M.A.M., Saneoka H., Fujit K., Yamashita I., Proliferation and rol gene expression in hairy root lines of Egyptian clover. Plant Cell Tiss. Org. Cult., 2001, 66, 175–182

    Article  CAS  Google Scholar 

  37. Lin H.W., Kwok K.H., Doran P.M., Development of Linum flavum hairy root cultures for production of coniferin. Biotech. Let., 2003, 25, 521–525

    Article  CAS  Google Scholar 

  38. Tiwari R.K., Trivedi M., Guang Z.C., Guo G.Q., Zheng, G.C., Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavoponoids in hairy roots. Biol. Plantarum., 2008, 52, 26–35

    Article  CAS  Google Scholar 

  39. Stojakowska A., Malarz J., Szewczyk A., Kisiel W., Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiol. Plant., 2012, 34, 291–298

    CAS  Google Scholar 

  40. Hu C.Y., Chee P.P., Chesney R.H., Zhou J.H., Miller P.D., O’Brien W.T., Intrinsic GUS-like activities in seed plants. Plant Cell Rep., 1990, 9, 1–5

    Article  CAS  PubMed  Google Scholar 

  41. Hodal L., Bochardt A., Nielsen J., Mattsson O., Okkels F., Detection, expression and specific elimination of endogenous β-glucuronidase activity in transgenic and non-transgenic plants. Plant Sci., 1992, 87, 115–122

    Article  CAS  Google Scholar 

  42. Doran P.M., Properties and applications of hairy — root cultures. In: Okasman-Caldenty K.M. and Barz W.H. (Eds.) Plant Biotechnology and transgenic plants, 143–162, New York, Mercel Dekker Inc, 2002

    Google Scholar 

  43. Hansen G., Wright M.S., Recent advances in the transformation of plants. Trends Plant Sci., 1999, 4, 226–231

    Article  PubMed  Google Scholar 

  44. Shen W. H., Petit A., Guern J., Tempe J., Hairy roots are more sensitive to auxin than normal roots. PNSA., 1988, 85, 3417–3421

    Article  CAS  Google Scholar 

  45. Vinterhalter B., Zdravković-Korać S., Ninković S., Mitić N., Janković T., Miljuš-Đikuić J., Vinterhalter D., Variability in shoot cultures regenerated from hairy roots of Gentiana punctate. Biol. Plantarum., 2011, 55, 414–422

    Article  Google Scholar 

  46. Ninković S., Djordjević T., Vinterhalter B., Uzelac B., Cingel A., Savić J., Radović S. Embryonic responses of Beta vulgaris L. Callus induced from transgenic hairy roots. Plant Cell Tiss Organ Cult., 2010, 103, 81–91

    Article  Google Scholar 

  47. Santos de Araujo B., Dec J., Bollag J.M., Pletsch M., Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare. Chemosphere., 2006, 63, 642–651

    Article  CAS  Google Scholar 

  48. Bjelović A., Rosić N., Miljuš-Đukić J., Ninković S., Grubušić D., In vitro regeneration and transformation of Blackstonia perfoliata. Biol. Plantarum, 2004, 48, 333–338

    Article  Google Scholar 

  49. Wu J., Wang Y., Zhang L.-X., Zhang X.-Z., Kong J., Lu J., Han Z.-H., High-efficiency regeneration of Agrobacterium rhizogenes-induced hairy root in apple rootstock Malus baccata (L.) Borkh. Plant Cell Tiss. Organ Cult., 2012, 111, 183–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadić Vojin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vojin, T., Snežana, M., Aleksandar, C. et al. Production of hairy root cultures of lettuce (Lactuca sativa L.). cent.eur.j.biol. 9, 1196–1205 (2014). https://doi.org/10.2478/s11535-014-0351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0351-9

Keywords

Navigation