Abstract
Sweet rowanberries originated by the crossbreeding of wild rowanberries with other fruit species such as apples, medlars or black chokeberries. They are highly resistant to cold climate. In contrast with wild rowanberries, they have sweet mild taste and show less parasorbic acid toxicity, which can be eliminated, when the consumption is excessive, by heating. The objective of the work was to determine selected antioxidant properties in 6 cultivars. The analyses showed that the contents of total phenolics, total flavonoids and ascorbic acid were high. Similarly, antioxidant capacity (6.58–9.62 g of ascorbic acid equivalents kg−1) was also high. The work brings novel data, in particular, when comparing the cultivars; moreover, results regarding reactive oxygen and nitrogen species scavenging activity in sweet rowanberries are being published for the first time. The sweet rowanberry extracts (10%) showed inhibitory ability on hydroxyl radical (16.12–24.73%), superoxide anion (26.74–34.02%), nitric oxide (24.75–31.39%), and lipid peroxidation (7.93–13.12%). The values obtained are even many times higher than those found in common commercial fruit species like apples. Therefore, sweet rowanberries appear to be a promising fruit species for human nutrition, especially due to their high content of bioactive substances and ease of cultivation in worse climatic and soil conditions.
This is a preview of subscription content, access via your institution.
References
Tetera V., Fruit of the White Carpathians [Ovoce Bilych Karpat], CSOP, Veseli nad Moravou, Czech Republic, 2006, pp. 66–110
Rop O., Mlcek J., Reznicek V., Mineral elements in fruits interspecific hybrids crane [Mineralni prvky v plodech mezidruhovych krizencu jerabu], Zahradnictvi, 2011, 52, 15–17
Hricovsky I., Small fruit [Drobne ovoce], Priroda, Bratislava, Slovak Republic, 2002, pp. 73–74
Kyzlink V., Principles of Food Preservation, Elsevier, Amsterdam, Netherlands, 1990, pp. 46–51
Berna E., Kampuse S., Dukalska L., Murniece I., The chemical and physical properties of sweet rowanberries in powder sugar. Foodbalt-2011, Conference Proceedings, 6th Baltic Conference on Food Science and Technology “Innovations for Food Science and Production“, Jelgava, Latvia, May 5–6, 2011, 163–168
Kutina J., Pomologic atlas [Pomologicky atlas], Brazda, Prague, Czech Republic, 1991, pp. 282–283
Janick J., Paull R.E., The Encyclopedia of Fruit and Nuts, CAB International, Cambridge, MA, USA, 2008, 320 p
Kampuss K., Kampuse S., Berna E., Kruma Z., Krasnova I., et al., Biochemical composition and antiradical activity of rowanberry (Sorbus L.) cultivars and hybrids with different Rosaceae L. cultivars, Latvian Journal of Agronomy, 2008, 1, 59–65.
Hukkanen A.T., Polonen S.S., Karenlampi S.O., Kokko H.I., Antioxidant capacity and phenolic content of sweet rowanberries, J. Agric. Food Chem., 2006, 54, 112–119
Gil-Izquerdo A., Mellethin A., Identification and quantifitation of flavonols in rowanberry (Sorbus aucuparia L.) juice, Eur. Food Res. Technol., 2001, 213, 12–17
Aruoma O.I., Nutrition and health aspects of free radicals and antioxidants, Food Chem. Toxicol., 1994, 62, 671–683
Jomova K., Valko M., Advancases in metal-induced oxidative stress and human disease, Toxicology, 2011, 283, 65–87
Velisek J., Chemie potravin, OSSIS, Tabor, Czech Republic, 2002, pp. 216–220
Barros L., Falcao S., Baptista P., Freire C., Vilas-Boas M., Ferreira I.C.F.R., Antioxidant activity of Agaricus spp. mushrooms by chemical, biochemical and electrochemical assays, Food Chem., 2008, 111, 61–66
Wang Z., Hsu Ch., Yin M., Antioxidative characteristics of aqueous and ethanol extracts of glossy privat fruit, Food Chem., 2009, 112, 914–918
Kylli P., Nohynek L., Puupponen-Pimiä, R., Westerlund-Wikström B., McDougall G., Stewart D, et al., Rowanberry phenolics: Compositional analysis and bioactives, J. Agric. Food Chem., 2010, 58, 11985–11992
Anonymous, UKZUZ — Data from Central Institute for Supervising and Testing in Agriculture, UKZUZ, Brno, Czech Republic, 2008
Barros L., Baptista, P., Ferreira I.C.F.R., Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays, Food Chem. Toxicol., 2007, 45, 1731–1737
Kim D.O., Neony S.W., Lee C.Y., Antioxidant capacity of phenolic phytochemicals from various cultivars of plums, Food Chem., 2003, 51, 321–326
Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Byrne D.H., Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Compos. Anal., 2006, 19, 669–675
Rupasinghe V.H.P., Jayasankar S., Lay W., Variation in total phenolic and antioxidant capacity among European plum genotypes, Sci. Hortic., 2006, 108, 243–246
Singleton V.L., Orthofer R., Lamuela-Raventos R.M., Analysis of total phenols and other oxidation substrates and antioxidants by Folin-Ciocalteu reagent, Method. Enzymol., 1999, 299, 152–178
Miki N., High-performance liquid-chromatographic determination of ascorbic acid in tomato products, J. Jpn. Soc. Food Sci., 1981, 28, 264–268
Ghiselli A., Nardini M., Baldi A., Scaccini C., Antioxidant activity of different phenolic fractions separated from an Italian red wine, J. Agr. Food Chem., 1998, 46, 361–367.
Beissenhirtz M.K., Kwan R.C., Ko K.M., Renneberg R., Schiller F.W., Liskat F., Comparing an in vitro electrochemical measurement of superoxide scavenging activity with an in vivo assessment of antioxidant potential in Chinese tonifying herbs, Phytother. Res., 2004, 18, 149–153
Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok, J.S., Tannenbaum, S.R., Analysis of nitrate, nitrite, and [15N]_nitrate in biological fluids, Anal. Biochem., 1982, 126, 131–138
Anup S., Shereen R.H., Shivanandappa T., Antioxidant activity of the roots of Decalepis hamiltonii, LWT-Food Sci. Technol., 2006, 36, 1059–1065
Rop O., Mlcek J., Jurikova T., Valsikova M., Antioxidant properties of interspecific crosses of rowan (Sorbus L.). Sborník z mezinárodní vědecké konference „Horticulture Nitra 2012“, SPU Nitra, 13.–14. 11. 2012, s. 193–197
Mikulic-Petkovsek M., Slatnar A., Stampar F., Veberic R., HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species, Food Chem. 2012, 135, 2138–2146
Bravo L., Polyphenols: chemistry, dietary sources, metabolim, and nutritional signifikace, Nutr. Rev., 1998, 56, 317–333
Dixon R.A., Paiva N.L., Stress induced phenylpropanoid metabolism, Plant Cell, 1995, 7, 1085–1097
Häkkinen S.H., Kärenlampi S.O., Heinonen I.M., Mykkänen H.M., Törrönen A.R., HPLC method for screening of flavonoids and phenolic acids in berries, J. Sci. Food Agr., 1998, 77, 543–551
Heinonen I.M., Meyer A.S., Frankel E.N., Antioxidant activity of berry phenolics on human low-density lipoprotein nad liposome oxidation, J. Agric. Food Chem., 1998, 46, 4107–4112
Häkkinen S.H., Kärenlampi S.O., Heinonen I.M., Mykkänen H.M., Törrönen A.R., Content of flavonols quercetin, myrycetin and kaempferol in 25 edible berries, J. Agric. Food Chem., 1999, 47, 2274–2279
Mattila P., Hellström J., Törrönen R., Phenolic acids in berries, fruits, and beverages, J. Agric. Food Chem., 2006, 54, 7193–7199
Jurikova T., Sochor J., Rop O., Mlcek J., Balla S., Szekeres L., et al., Polyphenolic Profile and Biological Activity of Chinese Hawthorn (Crataegus pinnatifida BUNGE) Fruits, Molecules, 2012, 17, 14490–14509
Rop O., Reznicek V., Mlcek J., Jurikova T., Sochor J., Kizek R., et al., Nutritional values of new Czech cultivars of Saskatoon berries (Amelanchier alnifolia Nutt.), Hort. Sci., 2012, 39, 123–128
Rop O., Sochor J., Jurikova T., Zitka O., Skutkova H., Mlcek J., Salas P., Krska B., Babula P., Adam V., Kramarova D., Beklova M., Provaznik I., Kizek R. Effect of Five Different Stages of Ripening on Chemical Compounds in Medlar (Mespilus germanica L.), Molecules, 2011, 16, 74–91
Kovacikova E., Vojtassakova A., Holcikova K., Simonova E., Food table, [Potravinove tabulky]_NOI-UVTIP, Bratislava, Slovak Republic, 1997, pp. 89–90
Rop O., Jurikova T., Mlcek J., Kramarova D., Zultsetseg S., Antioxidant activity and selected nutritional values of plums (Prunus domestica L.) typical of the White Carpathian Mountains, Sci. Hortic-Amsterdam, 2009, 122, 545–549
Määttä-Riihinen K.R., Kamal-Eldin A., Mattila P.H., Gonzales-Paramas A.M., Törrönen A.R., Distribution and contents of phenolic compounds in eighteen Scandinavian berry species, J. Agric. Food Chem., 2004, 52, 4477–4486
Samec D., Salopek I., Salopek-Sondi B., Piljac Žegarac J., Grafting black chokeberry (Aronia melanocarpa L., var. Viking) onto European rowan (Sorbus aucuparia L.) yields fruit with superior phytochemical content and bioactivity In: International Symposium of Biotech Students-Book of AbstractsZagreb: Students’ Association of Biotechnology Helix, 2009, 31–32
Sabir S.M., Maqsood H., Hayat M., Khan M.Q., Khaliq A., Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries of Pakistani origin, J. Med. Food, 2005, 8, 518–522
Rop O., Řezníček V., Mlček J., Juríková T., Balík J., Sochor J., et al., Antioxidant and radical oxygen species scavenging activities of 12 cultivars of blue honeysuckle fruit, Hort. Sci., 2011, 38, 63–70
Jurikova T., Sochor J., Rop O., Mlcek J., Balla S., Szekeres L., et al., Evaluation of polyphenolic profile and nutritional value of non-traditional fruit species in the Czech Republic — a comparative study, Molecules, 2012, 17, 8968–8981
Perino-Issartier S., Zill-e-Huma, Abert-Vian M., Chemat F., Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products, Food Bioprocess Tech., 2011, 4, 1020–1028
Tiitinen K.M., Yang B.R., Haraldsson G.G., Jonsdottir S., Kallio H.P., Fast analysis of sugars, fruit acids, and vitamin C in sea buckthorn (Hippophae rhamnoides L.) varieties, J. Agr. Food Chem., 2006, 54, 2508–2513
Rop O., Mlcek J., Jurikova T., Valsikova M., Bioactive content and antioxidant capacity of Cape gooseberry fruit, Cent. Eur. J. Biol., 2012, 7, 672–679
Rop O., Posolda M., Mlcek J., Reznicek V., Sochor J., Adam V., Kizek R., Sumczynski D., Qualities of Native Apple Cultivar Juices Characteristic of Central Europe, Not. Bot. Horti Agrobo., 2012, 40, 222–228
Bae S.H., Suh H.J., Antioxidant activities of five different mulberry cultivars in Korea, LWT-Food Sci. Technol., 2007, 40, 955–962
Maffei F., Tarozzi A., Karbone F., Marchesi A., Hrelia S., Angeloni C., et al., Relevance of apple consumption for protection against oxidative damage induced by hydrogen peroxide in human lymphocytes, Brit. J. Nutr., 2007, 97, 921–927
Rop O., Jurikova T., Sochor J., Mlcek J., Kramarova D., Antioxidant capacity, scavenging radical activity and selected chemical composition of native apple cultivars from Central Europe, J. Food Quality, 2011, 34, 187–194
Kähkönen M.P., Hopia A.I., Heinonen M., Berry phenolics and their antioxidant activity, J. Agr. Food Chem., 2001, 49, 4076–4082
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Mlcek, J., Rop, O., Jurikova, T. et al. Bioactive compounds in sweet rowanberry fruits of interspecific Rowan crosses. cent.eur.j.biol. 9, 1078–1086 (2014). https://doi.org/10.2478/s11535-014-0336-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11535-014-0336-8
Keywords
- Interspecific crosses of Rowan
- Sorbus aucuparia
- Phenolics
- Flavonoids
- Antioxidant capacity
- Ascorbic acid
- Reactive oxygen species
- Reactive nitrogen species