Skip to main content
Log in

The relationship of glycerol and glycolysis metabolism patway under hyperosmotic stress in Dunaliella salina

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

This study detected the upstream and downstream key genes of glycolysis in Dunaliella Salina by using Real-time Fluorescence Quantitative PCR assays and measurement of enzyme activity. The results were as follows: the levels of transcription, enzyme activity, and protein of D. salina PFK were up-regulated under hyperosmotic stress while D. salina ENO were down-regulated. At the same time we monitored the change of intracellular degradation of starch, the synthesis of glycerol and PEP concentration in Dunaliella Salina under hyperosmotic stress. We found that lower expression of DsENO reduced the concentration of intracellular PEP which promoted the degradation of starch, and decreased the flow of carbon into the tricarboxylic acid cycle which would favor the synthesis of glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casey, E., Mosier, N.S., Adamec, J., Stockdale, Z., Ho, N., Sedlak, M., Effect of salts on the Cofermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae, Biotechnology for Biofuels., 2013, 6(1): 83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Chen, H., Chen, S.L., Jiang, J.G., Effect of Ca2+ Channel Block on Glycerol Metabolism in Dunaliella salina under Hypoosmotic and Hyperosmotic Stresses, Plos one., 2011, 6(12): e28613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Oliveira, B.M., Barrio, E., Querol, A., Pérez-Torrado, R., Enhanced Enzymatic Activity of Glycerol-3-Phosphate Dehydrogenase from the Cryophilic Saccharomyces kudriavzevii, Plos one, 2014, 9(1): e87290

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lin, H., Fang, L., Low, C.S., Chow, Y., Lee, Y.K., Occurrence of glycerol uptake in Dunaliella tertiolecta under hyperosmotic stress, FEBS Journal, 2013, 280(4): 1064–1072.

    Article  CAS  PubMed  Google Scholar 

  5. Dihazi, H., Kessler, R., Eschrich, K., High Osmolarity Glycerol (HOG) Pathway-induced Phosphorylation and Activation of 6-Phosphofructo-2-kinase Are Essential for Glycerol Accumulation and Yeast Cell Proliferation under Hyperosmotic Stress, Journal of Biological Chemistry, 2004, 279(23): 23961–23968

    Article  CAS  PubMed  Google Scholar 

  6. Muzzey, D., Gómez-Uribe, C.A., Mettetal, J.T., Oudenaarden, A., A systems-level analysis of perfect adaptation in yeast osmoregulation, Cell, 2009, 138(1): 160–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. O’Rourke, S.M., Herskowitz, I., O’Shea, E.K., Yeast go the whole HOG for the hyperosmotic response, TRENDS in Genetics, 2002, 18(8): 405–412

    Article  PubMed  Google Scholar 

  8. Wang, L., Hatzimanikatis, V., Metabolic engineering under uncertainty-II: Analysis of yeast metabolism, Metabolic engineering, 2006, 8(2): 142–159

    Article  CAS  PubMed  Google Scholar 

  9. Yang, W., Cao, Y., Sun, X., Huang, F., He Q., Qiao D., et al., Isolation of a FAD-GPDH gene encoding a mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase from Dunaliella salina, J. Basic Microbiol., 2007, 47, 266–274

    Article  CAS  PubMed  Google Scholar 

  10. He, Q., Qiao, D., Bai, L., Zhang, Q., Yang, W., Li, Q., et al., Cloning and characterization of a plastidic glycerol 3-phosphate dehydrogenase cDNA from Dunaliella salina, J. Plant Physiol., 2007, 164, 214–220

    Article  CAS  PubMed  Google Scholar 

  11. Chen, H., Jiang, J.G., Osmotic responses of Dunaliella to the changes of salinity, J. Cell Physiol., 2009, 219, 251–258

    Article  CAS  PubMed  Google Scholar 

  12. Wu, C., Khan, S.A., Peng, L.J., Lange, A.J., Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: Beyond its allosteric effects on glycolytic and gluconeogenic enzymes, Advances in enzyme regulation, 2006, 8(2): 142–159

    Google Scholar 

  13. Mor, I., Cheung, E.C., Vousden, K.H., Control of Glycolysis through Regulation of PFK1: Old Friends and Recent Additions, Cold Spring Harbor symposia on Quantitative Biology, 2011, 76: 211–216

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen, T.H., Rung, J.H., Villadsen, D., Fructose-2, 6-bisphosphate: a traffic signal in plant metabolism, Trends in plant science, 2004, 9(11): 556–563

    Article  CAS  PubMed  Google Scholar 

  15. Smith, S.R., Abbriano, R.M., Hildebrand, M., Comparative analysis of diatom genomes reveals substantial differences in the organization of carbon partitioning pathways, Algal Research, 2012, 1(1): 2–16

    Article  CAS  Google Scholar 

  16. Traut, T., Phosphofructokinase, Allosteric Regulatory Enzymes, 2008

    Google Scholar 

  17. Muñoz, E., Ponce, E., Pyruvate kinase: current status of regulatory and functional properties, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2003, 135(2): 197–218

    Article  Google Scholar 

  18. Voll, L.M., Hajirezaei, M.R., Czogalla, C., Lein, W., Stitt, M., Sonnewald, U., et al., Antisense inhibition of enolase strongly limits the metabolism of aromatic amino acids, but has only minor effects on respiration in leaves of transgenic tobacco plants, New Phytologist, 2009, 184(3): 607–618

    Article  CAS  PubMed  Google Scholar 

  19. Liu, K.J., Shih, N.Y., The Role of Enolase in Tissue Invasion and Metastasis of Pathogens and Tumor Cells, J. Cancer Mol., 2007, 3(2): 45–48

    Google Scholar 

  20. Dondini, L., Bonazzi, S., Del Duca, S., Bregoli, A.M., Acclimation of chloroplast transglutaminase to high NaCl concentration in a polyaminedeficient variant strain of Dunaliella salina and in its wild type, J. Plant Physiol., 2001, 158, 185–197

    Article  CAS  Google Scholar 

  21. Ramos, A., Coesel, S., Marques, A., Rodrigues, M., Baumgartner, A., Noronha, J., et al., Isolation and characterization of a stress-inducible Dunaliella salina Lcy-β gene encoding a functional lycopene beta-cyclase, Appl. Microbiol. Biotechnol., 2008, 79, 819–828

    Article  CAS  PubMed  Google Scholar 

  22. Oren, A., A hundred years of Dunaliella research: 1905–2005. Saline Systems, 2005, 1(2): 1–14

    Google Scholar 

  23. Goyal, A., Osmoregulation in Dunaliella, part II: photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta, Plant Physiol Biochem., 2007, 45(9): 705–710

    CAS  PubMed  Google Scholar 

  24. Cloutier, M., Wellstead, P., The control systems structures of energy metabolism, J. R. Soc. Interface., 2010, 7, 651–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cui, L., Xue, L., Li, J., Zhang, L., Yan, H., Characterization of the glucose-6-phosphate isomerase (GPI) gene from the halotolerant alga Dunaliella salina, Mol. Biol. Rep., 2010, 37, 911–916

    Article  CAS  PubMed  Google Scholar 

  26. Ruan, K., Duan, J.B., Bai, F.W., Lemair, M., Ma, X.Z., Bai, L.H., Function of Dunaliella salina (Dunaliellaceae) enolase and its expression during stress, Eur. J. Phyco., 2009, 44, 207–214

    Article  CAS  Google Scholar 

  27. Ehrenfeld, J., Cousin, J.L., Ionic regulation of the unicellular green alga Dunaliella tertiolecta: Response to hypertonic shock, J. Membr. Biol., 1984, 77, 45–55

    Article  CAS  Google Scholar 

  28. Belmans, D., Van, Laere, A., Glycerol cycle enzymes and intermediates during adaption of Dunaliella teriolecta cells to hyperosmotic stress, Plant Cell Environ., 1987, 10, 185–190

    CAS  Google Scholar 

  29. Belmans, D., Van, Laere, A., Effect of Ionophores on the ATP-pool and Glycerol Content in Cells of the Halotolerant Green Alga Dunaliella tertiolecta, Microbiology, 1988, 134, 2261–2268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Han Bai.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, BB., Wang, SH., Duan, JB. et al. The relationship of glycerol and glycolysis metabolism patway under hyperosmotic stress in Dunaliella salina . cent.eur.j.biol. 9, 901–908 (2014). https://doi.org/10.2478/s11535-014-0323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0323-0

Keywords

Navigation