Skip to main content
Log in

The expression of the Candida albicans gene SAP4 during hyphal formation in human serum and in adhesion to monolayer cell culture of colorectal carcinoma Caco-2 (ATCC)

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Candida albicans SAP4 gene encodes secretory aspartyl protease Sap4 which is involved in hyphae formation and virulence. Transcriptional factors Cph1 and Efg1 govern the expression of several C. albicans genes and contribute to morphogenesis. We investigated the expression of SAP4 in C. albicans clinical isolate and mutants lacking Efg1 or/ and Cph1 grown in human serum and during contact with Caco-2 cell line. mRNA was analyzed with the use of RT-PCR; relative quantification was normalized against an ACT1 in cells after 18-h growth either in serum or on monolayer as well as in their counterparts in YEPD medium. We assessed the role of Sap4, Efg1 and Cph1 in adhesion of C. albicans to epithelial cells. Additionally, adherence assay was performed with sap4/sap4. Adhesion was expressed as a percent of adherent cells to monolayer at 90 min vs. total cells added (100%). No differences were observed in adhesion of efg1/efg1 and sap4/sap4 compared with SC5314 (P≥0.05 statisitically insignificant). SAP4 expression indicated that it is not involved in adapting to the tested conditions. SAP4 expression can be strainspecific and is not solely controlled by the Efg1 pathway but also by the Cph1 pathway. Neither Efg1 nor Sap4 can influence adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanchez A.A., Johnston D.A., Myers C., Edwards J.E., Mitchell A.P., Filler S.G., Relationship between Candida albicans virulence during experimental hematogenously disseminated infection and endothelial cell damage in vitro, Infect. Immun., 2004, 72, 598–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Dalle F., Wächtler B., L’Ollivier C., Holland G., Bannert N., Wilson D., et al., Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes, Cell Microbiol., 2010, 12, 248–271

    Article  CAS  PubMed  Google Scholar 

  3. Langford M.L., Hargarten J.C., Patefield K.D., Marta E., Blankenship J.R., Fanning S., Nickerson K.W., Atkin A.L., Candida albicans Czf1 and Efg1 Coordinate the Response to Farnesol during Quorum Sensing, White-Opaque Thermal Dimorphism, and Cell Death. Eukaryot Cell., 2013 12, 1281–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Jackson B.E., Wilhelmus K.R., Hube B., The Role of Secreted Aspartyl Proteinases in Candida albicans Keratitis, Invest. Ophthal. Vis. Sci., 2007, 48, 3559–3565

    Article  PubMed  Google Scholar 

  5. Lo H.J., Köhler J.R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G.R., Nonfilamentous C. albicans Mutants Are Avirulent, Cell, 1997, 90, 939–949

    Article  CAS  PubMed  Google Scholar 

  6. Hube B., Fungal adaptation to the host environment, Curr. Opin. Microbiol., 2009, 12, 347–349

    Article  PubMed  Google Scholar 

  7. Martin R., Wächtler B., Schaller M., Wilson D., Hube B., Host-pathogen interaction and virulenceassociated genes during Candida albicans oral infections, Int. J. Med. Microbiol., 2011, 301, 417–422

    Article  CAS  PubMed  Google Scholar 

  8. Barnett J.A., A history of research on yeasts 12: medical yeasts part I, Candida albicans, Yeast, 2008, 25, 385–417

    Article  CAS  Google Scholar 

  9. Staniszewska M., Bondaryk M., Siennicka K., Piłat J., Schaller M., Kurzątkowski W., Role of aspartic proteinases in Candida albicans virulence. Part II: expression of SAP1-10 aspartic proteinase during Candida albicans infectins in vivo, Post. Mikrobiol., 2012d, 51, 137–142

    CAS  Google Scholar 

  10. Staniszewska M., Bondaryk M., Swoboda-Kopeć E., Siennicka K., Sygitowicz G., Kurzątkowski W., Candida albicans morphogenesis revealed by scanning electron microscopy analysis, Braz. J. Microbiol., (in press), 2013, 3

    Google Scholar 

  11. Naglik J.R., Moyes D., Makwana J., Kanzaria P., Tsichlaki E., Weindl G., et al., Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis, Microbiology, 2008, 154, 3266–3280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Schweizer A., Rupp S., Taylor B.N., Röllinghoff M., Schröppel K., The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans, Mol. Microbiol., 2000, 38, 435–445

    Article  CAS  PubMed  Google Scholar 

  13. Wu H., Downs D., Ghosh K., Ghosh A.K., Staib P., Monod M., Tang J. Candida albicans secreted aspartic proteases 4–6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism, FASEB J., 2013, 27, 2132–44

    Article  CAS  PubMed  Google Scholar 

  14. Correia A., Lermann U., Teixeira L., Cerca F., Botelho S., Gil da Costa R.M., Limited Role of Secreted Aspartyl albicans Virulence and Host Immune Proteinases Sap1 to Sap6 in Candida Response in Murine Hematogenously Disseminated Candidiasis. Infect. Immun., 2010, 78, 4839–4849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Pietrella D., Rachini A., Pandey N., Schild L., Netea M., Bistoni F., Hube B., Vecchiarelli A., The Inflammatory response induced by aspartic proteases of Candida albicans is independent of proteolytic activity. Infect Immun., 2010, 78, 4754–4762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. White T.C., Agabian N., Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors, J. Bacteriol., 1995, 177, 5215–5221

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Staniszewska M., Bondaryk M., Kurek A., Orłowski J., Schaller M., Kurzątkowski W., In vito study of secreted aspartyl proteinases Sap1 to Sap3 and Sap4 to Sap6 expression in Candida albicans pleomorphic forms, Pol. J. Microbiol., 2012e, 61, 247–256

    CAS  PubMed  Google Scholar 

  18. Fan Y., He H., Dong Y., Pan H., Hyphae-Specific Genes HGC1, ALS3, HWP1, and ECE1 and Relevant Signaling Pathways in Candida albicans, Mycopathologia, 2013

    Google Scholar 

  19. Moazenia M., Khoramizadeh M.R, Kordbacheh P., Sepehrizadeh Z., Zeraati H., Noorbakshsh F., Teimoori-Toolabi L., Rezaie S. RNA — Mediated gene silecing in Candida albicans: Inhibition of Hypae formation by use of RNAi technology, Mycopathologia, 2012, 174, 177–185

    Article  Google Scholar 

  20. Wächtler B., Wilson D., Haedicke K., Dalle F., Hube B, From attachement to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells, PLOS ONE, 2011, 6, e17046

    Article  PubMed Central  PubMed  Google Scholar 

  21. Chung S.C., Kim T.I., Ahn C.H., Shin J., Oh K.B., Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid, FEBS Letters, 2010, 584, 4639–4645

    Article  CAS  PubMed  Google Scholar 

  22. Han T-L., Cannon R.D., Villas-Bõas S.G., The metabolic basis of Candida albicans morphogenesis and quorum sensing, Fungal Genet. Biol., 2011, 48, 747–763

    Article  CAS  PubMed  Google Scholar 

  23. Staniszewska M., Bondaryk M., Siennicka K., Piłat J., Schaller M., Kurzątkowski W., Role of aspartic proteinases in Candida albicans virulence. Part I: Substrate specificity of aspartic proteinases and Candida albicans pathogenesis, Post. Mikrobiol., 2012c, 51, 127–135

    CAS  Google Scholar 

  24. Aoki W., Kitahara N., Miura N., Morisaka H., Yamamoto Y., Kuroda K., et al., Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans, J. Biochem., 2011, 150, 431–438

    Article  CAS  PubMed  Google Scholar 

  25. Pinto M., Robine-Leon S., Appay M., Kedinger M., Triadou N., Dussaulx E., et al., Enterocyte like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture, Biol. Cell, 1983, 43: 323–330

    Google Scholar 

  26. Gillum A.M., Tsay E.Y., Kirsch D.R., Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, Mol. Gen. Genet., 1984, 198, 179–182

    Article  CAS  PubMed  Google Scholar 

  27. Pfaller M.A., Bale M., Buschelman B., Lancaster M., Espinel-Ingroff A., Rex J.H., et al., Selection of Candidate Quality Control Isolates and Tentative Quality Control Ranges for In Vitro Susceptibility Testing of Yeast Isolates by National Committee for Clinical laboratory Standards Proposed Standard Methods, J. Clin. Microbiol., 1994, 32: 1650–1653

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Staniszewska M., Search for Candida albicans virulence factors, PhD thesis, NIPH-NIH, Warsaw, Poland, 2009

    Google Scholar 

  29. Luo G., Mitchell T.G., Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. J. Clin. Microbiol., 2002, 40, 2860–2865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ness F., Prouzet-Mauleon V., Vieillemard A., Lefebvre F., Noël T., Crouzet M., et al., The Candida albicans Rgd1 is a RhoGAP protein involved in the control of filamentous growth, Fungal Genet. Biol., 2010, 47, 1001–1011

    Article  CAS  PubMed  Google Scholar 

  31. Staniszewska M., Bondaryk M., Kurzątkowski W., Morphotypes of Candida albicans. Phase-contrast microscopy, Mikol. Lek., 2011, 18, 9–14

    Google Scholar 

  32. Staniszewska M., Bondaryk M., Siennicka K., Kurzątkowski W., Ultrastructure of Candida albicans Pleomorphic Forms: Phase-Contrast Microscopy, Scanning and Transmission Electron Microscopy, Pol. J. Microbiol., 2012a, 61, 129–135

    PubMed  Google Scholar 

  33. Amberg D.C., Burke D.J., Strathern J.N., Yeast RNA isolations, Techniques and Protocols #6. In: Amberg D.C., Burke D.J., Strathern J.N., (Eds.) Methods in yeast genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2005, p. 127

    Google Scholar 

  34. Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)), Method Methods, 2001, 25, 402–428

    Article  CAS  Google Scholar 

  35. Hashash R., Younes S., Bahnan W., El Koussa J., Maalouf K., Dimassi H.I., et al., Characterisation of Pga1, a putative Candida albicans cell wall protein necessary for proper adhesion and biofilm formation, Mycoses, 2010, 54, 491–500

    Article  PubMed  Google Scholar 

  36. Correia A., Lermann U., Teixeira L., Cerca F., Botelho S., da Costa R.M., Sampaio P., Gärtner F., Morschhäuser J., Vilanova M., Pais C., Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect. Immun., 2010, 78, 4839–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Znaidi S., Nesseir A., Chauvel M., Rossignol T., d’Enfert C., A Comprehensive Functional Portrait of Two Heat Shock Factor-Type Transcriptional Regulators Involved in Candida albicans Morphogenesis and Virulence. PLoS Pathog., 2013, 9: e1003519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kumamoto C.A., Vinces M.D., Contribution of hyphae and hypha-co-regulated genes to Candida albicans virulence, Cell. Microbiol., 2005, 7: 1546–1554

    Article  CAS  PubMed  Google Scholar 

  39. Jayatilake J.A.M.S. and Samaranayake L.P., Experimental superficial candidiasis on tissue models. Mycoses, 2010, 53, 285–295

    CAS  PubMed  Google Scholar 

  40. Lermann U., Morschhauser J., Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans, Microbiology, 2008, 154, 3281–95

    Article  CAS  PubMed  Google Scholar 

  41. Moyes D.L., Murciano C., Runlall M., Kohli A., Islam A., Naglik J.R., Activation of MAPK/c-Fos induced responses in oral epithelial cells is specific to Candida albicans and Candida dubliniensis hyphae. Med Microbiol Immunol, 2012, 201, 93–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Staniszewska.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staniszewska, M., Bondaryk, M., Malewski, T. et al. The expression of the Candida albicans gene SAP4 during hyphal formation in human serum and in adhesion to monolayer cell culture of colorectal carcinoma Caco-2 (ATCC). cent.eur.j.biol. 9, 796–810 (2014). https://doi.org/10.2478/s11535-014-0311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0311-4

Keywords

Navigation