Skip to main content
Log in

In silico identification and characterization of conserved plant microRNAs in barley

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Background /Methodology

Taking advantage of a newly available barley (Hordeum vulgare) genome sequence assembly and increasing number of miRNAs identified in other plant species, we carried out computational analyses to identify and characterize miRNAs conserved in barley. We investigate the locations of miRNAs on the barley genome assembly and provide annotation of the functions of their predicted target genes. We compare our results to previous miRNA studies and publicly available barley small RNA libraries.

Results

116 mature miRNA sequences from 60 miRNA families have been found in the barley genome assembly by our miRNA identification pipeline. Closely related cereal crops contain most of the miRNA families that we found in the barley genome assembly. Most miRNA genes were located in intergenic regions or introns. Among the 116 mature miRNAs predicted, 80 have been reported in previous barley miRNA studies. Eight mature miRNA sequences have never reported in the previous barley miRNA studies.

Conclusions

This in silico study has provided updated information in characterizing plant miRNAs in barley. The identified miRNA and precursor sequences, their genomic locations as well as predicted target transcripts will serve as valuable resources for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishra N. S., Mukherjee S. K. A Peep into the Plant miRNA World. The Open Plant Science Journal. 2007, 1, 1–9.

    Article  CAS  Google Scholar 

  2. Zhang B., Pan X., Cobb G. P., Anderson T. A. Plant microRNA: a small regulatory molecule with big impact. Dev. Biol. 2006, 289, 3–16.

    Article  CAS  PubMed  Google Scholar 

  3. Schwach F., Moxon S., Moulton V., Dalmay T. Deciphering the diversity of small RNAs in plants: the long and short of it. Brief Funct Genomic Proteomic. 2009, 8, 472–481.

    Article  CAS  PubMed  Google Scholar 

  4. Schreiber A., Shi B.-J., Huang C.-Y., Langridge P., Baumann U. Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics. 2011, 12, 129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chen X. MicroRNA biogenesis and function in plants. FEBS Lett. 2005, 579, 5923–5931.

    Article  CAS  PubMed  Google Scholar 

  6. Bartel D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  7. Krol J., Loedige I., Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11, 597–610.

    CAS  PubMed  Google Scholar 

  8. Khraiwesh B., Zhu J. K., Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys. Acta. 2012, 1819, 137–148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004, 32, D109–111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kantar M., Unver T., Budak H. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct. Integr. Genomics. 2010, 10, 493–507.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang B., Pan X., Wang Q., Cobb G. P., Anderson T. A. Computational identification of microRNAs and their targets. Comput. Biol. Chem. 2006, 30, 395–407.

    Article  CAS  PubMed  Google Scholar 

  12. Subramanian S., Fu Y., Sunkar R., Barbazuk W. B., Zhu J. K., Yu O. Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics. 2008, 9, 160.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Zhang W., Luo Y., Gong X., Zeng W., Li S. Computational identification of 48 potato microRNAs and their targets. Comput. Biol. Chem. 2009, 33, 84–93.

    Article  CAS  PubMed  Google Scholar 

  14. Martinez G., Forment J., Llave C., Pallas V., Gomez G. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs. PLoS One. 2011, 6, e19523.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Moxon S., Jing R., Szittya G., Schwach F., Rusholme Pilcher R. L., Moulton V., et al. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 2008, 18, 1602–1609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Colaiacovo M., Subacchi A., Bagnaresi P., Lamontanara A., Cattivelli L., Faccioli P. A computational-based update on microRNAs and their targets in barley (Hordeum vulgare L.). BMC Genomics. 2010, 11, 595.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lv S., Nie X., Wang L., Du X., Biradar S. S., Jia X., et al. Identification and Characterization of MicroRNAs from Barley (Hordeum vulgare L.) by High-Throughput Sequencing. Int. J. Mol. Sci. 2012, 13, 2973–2984.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Curaba J., Spriggs A., Taylor J., Li Z., Helliwell C. miRNA regulation in the early development of barley seed. BMC Plant Biol. 2012, 12, 120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. International Barley Genome Sequencing C., Mayer K. F., Waugh R., Brown J. W., Schulman A., Langridge P., et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012, 491, 711–716.

    Google Scholar 

  20. Griffiths-Jones S., Grocock R. J., van Dongen S., Bateman A., Enright A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34, D140–144.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kim B., Yu H. J., Park S. G., Shin J. Y., Oh M., Kim N., et al. Identification and profiling of novel microRNAs in the Brassica rapa genome based on small RNA deep sequencing. BMC Plant Biol. 2012, 12, 218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Langmead B., Trapnell C., Pop M., Salzberg S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Milne I., Bayer M., Cardle L., Shaw P., Stephen G., Wright F., et al. Tablet—next generation sequence assembly visualization. Bioinformatics. 2010, 26, 401–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yang X., Li L. miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics. 2011, 27, 2614–2615.

    CAS  PubMed  Google Scholar 

  25. Hofacker I. L., Stadler P. F. Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics. 2006, 22, 1172–1176.

    Article  CAS  PubMed  Google Scholar 

  26. Jones-Rhoades M. W., Bartel D. P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell. 2004, 14, 787–799.

    Article  CAS  PubMed  Google Scholar 

  27. Dai X., Zhao P. X. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 2011, 39, W155–159.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Edgar R., Domrachev M., Lash A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wheeler D. L., Barrett T., Benson D. A., Bryant S. H., Canese K., Chetvernin V., et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2008, 36, D13–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  31. Meyers B. C., Axtell M. J., Bartel B., Bartel D. P., Baulcombe D., Bowman J. L., et al. Criteria for annotation of plant MicroRNAs. Plant Cell. 2008, 20, 3186–3190.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Jones-Rhoades M. W., Bartel D. P., Bartel B. MicroRNAs AND THEIR REGULATORY ROLES IN PLANTS. Annual Review of Plant Biology. 2006, 57, 19–53.

    Article  CAS  PubMed  Google Scholar 

  33. Thakur V., Wanchana S., Xu M., Bruskiewich R., Quick W. P., Mosig A., et al. Characterization of statistical features for plant microRNA prediction. BMC Genomics. 2011, 12, 108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jiao Y., Song W., Zhang M., Lai J. Identification of novel maize miRNAs by measuring the precision of precursor processing. BMC Plant Biol. 2011, 11, 141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lelandais-Briere C., Sorin C., Declerck M., Benslimane A., Crespi M., Hartmann C. Small RNA diversity in plants and its impact in development. Curr. Genomics. 2010, 11, 14–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhao B., Ge L., Liang R., Li W., Ruan K., Lin H., et al. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol. Biol. 2009, 10, 29.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Zhao M., Ding H., Zhu J. K., Zhang F., Li W. X. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol. 2011, 190, 906–915.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Li W. X., Oono Y., Zhu J., He X. J., Wu J. M., Iida K., et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell. 2008, 20, 2238–2251.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Chiou T. J., Aung K., Lin S. I., Wu C. C., Chiang S. F., Su C. L. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell. 2006, 18, 412–421.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lin S. I., Chiang S. F., Lin W. Y., Chen J. W., Tseng C. Y., Wu P. C., et al. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol. 2008, 147, 732–746.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Branscheid A., Sieh D., Pant B. D., May P., Devers E. A., Elkrog A., et al. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol. Plant Microbe Interact. 2010, 23, 915–926.

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez R. E., Mecchia M. A., Debernardi J. M., Schommer C., Weigel D., Palatnik J. F. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development. 2010, 137, 103–112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Liu D., Song Y., Chen Z., Yu D. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant. 2009, 136, 223–236.

    Article  CAS  PubMed  Google Scholar 

  44. Hewezi T., Maier T. R., Nettleton D., Baum T. J. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol. 2012, 159, 321–335.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Liu P. P., Montgomery T. A., Fahlgren N., Kasschau K. D., Nonogaki H., Carrington J. C. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 2007, 52, 133–146.

    Article  CAS  PubMed  Google Scholar 

  46. Mallory A. C., Bartel D. P., Bartel B. MicroRNAdirected regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell. 2005, 17, 1360–1375.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Liu X., Huang J., Wang Y., Khanna K., Xie Z., Owen H. A., et al. The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J. 2010, 62, 416–428.

    Article  PubMed  Google Scholar 

  48. Colaiacovo M., Lamontanara A., Bernardo L., Alberici R., Crosatti C., Giusti L., et al. On the complexity of miRNA-mediated regulation in plants: novel insights into the genomic organization of plant miRNAs. Biol. Direct. 2012, 7, 15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Yan K., Liu P., Wu C. A., Yang G. D., Xu R., Guo Q. H., et al. Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol. Cell. 2012, 48, 521–531.

    Article  CAS  PubMed  Google Scholar 

  50. Quinlan A. R., Hall I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010, 26, 841–842.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kader J. C. Lipid-Transfer Proteins in Plants. Annu Rev Plant Physiol Plant Mol. Biol. 1996, 47, 627–654.

    CAS  PubMed  Google Scholar 

  52. Liang G., Yang F., Yu D. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 2010, 62, 1046–1057.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runxuan Zhang.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Hornyik, C., Bayer, M. et al. In silico identification and characterization of conserved plant microRNAs in barley. cent.eur.j.biol. 9, 841–852 (2014). https://doi.org/10.2478/s11535-014-0308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0308-z

Keywords

Navigation