Skip to main content
Log in

Susceptibility of naked oat cultivars to seed sprouting

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The production of economically important cereals is accompanied by the phenomenon of sprouting which in naked cultivars may limit their reproduction and usability. The objective of the work is to evaluate the susceptibility to sprouting in naked oat cultivars, and to test the usefulness of sprouting indices. In the years 2008–2010 for seeds of 8 cultivars, differing in the degree of sprouting damage, the coefficient of sprouting (Cs) was determined. Germinability (GF), dynamics (GD) and average germination time (GAT) were determined for seeds germinating in the presence of abscisic acid (ABA), gibberellic acid (GA3) and under control conditions. Basing on the falling number (FN) in consecutive days of the sprouting induction, alpha-amylase activity was determined. The highest values of Cs were found in 2008, the year with the highest total rainfall and temperature. In the presence of ABA the GF decreased by 21%, the GAT was 4.7 days longer, and the GD decreased by 55% compared with other substrates. An increase in alpha-amylase activity contributed to a 50%, on average, decrease in FN at 10°C and 30°C after 48 and 24 h of incubation, respectively. In the analyzed years the greatest resistance to sprouting was found for Bullion seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

Cs :

sprouting coefficient

FN:

falling number

GA3 :

gibberellic acid

ISABA :

index of sensitivity to ABA

References

  1. Wahl T.I., O’Rourke A.D., The economics of sprout damage in wheat, In: Walker-Simmons M.K., Ried J.I. (Eds.), Preharvest sprouting in Cereals, American Assiociation of Cereal Chemist Inc., St. Paul, Minnesota, 1993

    Google Scholar 

  2. Nyachiro J.M., Clerke F.R., DePauw R.M., Konx R.E., Armstrong K.C., Temperature effects on seed germination and expression of seed dormancy in wheat, Euphytica, 2002, 120, 123–127

    Article  Google Scholar 

  3. King R.W., Lycis I., Designing wheat ears to reduce sprouting — the use of umbrellas and raincoats, In: Ringlund K., Mosleth E., Mares D. J. (Eds.), 5th Int. Symp. On Pre-Harvest Sprouting in Cereals, Norway, 1989, 27–30

    Google Scholar 

  4. Ullrich S.E., Lee H., Clancy J.A., Blanco I.A., Jitkov V.A., Kleinhofs A., Han F., Prada D., Romagosa I., Molina-Cano J.L., Genetic relationships between preharvest sprouting and dormancy in barley, Euphytica, 2009, 168, 331–345

    Article  CAS  Google Scholar 

  5. Kato K., Nakamura W., Tabiki T., Miuraa H., Sawada S., Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes, Theor. Appl. Genet., 2001, 102, 980–985

    Article  CAS  Google Scholar 

  6. Bewley J.D., Seed germination and dormancy, Plant Cell, 1997, 9, 1055–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Weidner S., Pre-harvest sprouting of cereal seeds and its control, Post. Nauk Roln. 1992, 5/6, 89–104, (in Polish)

    Google Scholar 

  8. Gubler F., Millar A.A., Jacobsen V.J., Dormancy release, ABA and pre-harvest sprouting, Curr. Opin. Plant Biol., 2005, 8, 183–187

    Article  CAS  PubMed  Google Scholar 

  9. Kermode A.R., Role of Abscisic Acid in Seed Dormancy, J. Plant Growth Regul., 2005, 24, 319–344

    Article  CAS  Google Scholar 

  10. Chono M., Honda I., Shinoda S., Kushiro T., Kamiya Y., Nambara E., Kawakami N., Kaneko S., Watanabe Y., Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting, J. Exp. Bot., 2006, 57, 2421–2434

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y., Ma Y.Z., Xu Z.S., Chen X.M., He Z.H., Yu Z., Wilkinson M., Jones H.D., Shewry P.R., Xia L.Q., Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance, J. Exp. Bot. 2007, 58, 2863–2871

    Article  CAS  PubMed  Google Scholar 

  12. Carrera E., Holman T., Medhurst A., Dietrich D., Footitt S., Theodoulou F.L., Holdsworth M.J., Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis, The Plant J., 2008, 53, 214–224

    Article  CAS  Google Scholar 

  13. Finkelstein R., Reeves W., Ariizumi T., Steber C., Molecular Aspects of Seed Dormancy, Annu. Rev. Plant Biol., 2008, 59, 387–415

    Article  CAS  PubMed  Google Scholar 

  14. Mares D., Mrva K., Late-maturity α-amylase: Low falling number in wheat in the absence of preharvest sprouting, J. Cereal Sci., 2008, 47, 6–17

    Article  CAS  Google Scholar 

  15. Barrero J.M., Mrva K., Talbot M.J., White R.G., Taylor J., Gubler F., Mares D.J., Genetic, hormonal and physiological analysis of late maturity alphaamylase (LMA) in wheat, Plant Physiol., 2013, 161, 1265–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Górny A., An outline of oat genetics, In: Górny A. (Eds.), An outline of cereal genetics, IGR PAN, Poznań, 2005, 311–422, (in Polish)

    Google Scholar 

  17. Doehlert D.C., McMullen M.S., Characteristics of sprout damage in oats, Cereal Chem., 2003, 80, 608–612

    Article  CAS  Google Scholar 

  18. ISTA, International Rules for Seed Testing, ISTA, Zurich, 2010

    Google Scholar 

  19. Kamaha C., Maguire J.D., Effect of temperature on germination of six winter wheat cultivars, Seed Sci. Technol., 1992, 20, 181–185

    Google Scholar 

  20. Pieper A., Das saatgut. V.P. Darey Berlin, Hamburg, 1952

    Google Scholar 

  21. Masojć P., Stojałowski S., Łapiński M., Milczarski P., Sensitivity to exogenous growth regulators and the resistance to sprouting of winter oat cultivars, lines and hybrids, Biul. IHAR, 1995, 195/196, 341–349, (in Polish)

    Google Scholar 

  22. AACC, Approved methods of the American Association of Cereal Chemists, Method 56-81B. 10th ed. St. Paul, Minnesota, 2000

    Google Scholar 

  23. Steel R.G.D., Torrie J. H., Principles and procedures of statistics (2nd ed.), McGraw-Hill Book Company, 1980

    Google Scholar 

  24. Koornneef M., Bentsink L., Hilhorst H., Seed dormancy and germination, Curr. Opin. Plant Biol., 2002, 5, 33–36

    Article  CAS  PubMed  Google Scholar 

  25. Jacobsen J.V., Pearce D.W., Poole A.T., Pharis R.P., Mander L.N., Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination of barley, Physiol. Plantarum, 2002, 115, 428–441

    Article  CAS  Google Scholar 

  26. Weiss D., Ori N., Mechanisms of cross talk between gibberellin and other hormones, Plant Physiol., 2007, 144, 1240–1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Piskurewicz U., Jikumaru Y., Kinoshita N., Nambara E., Kamiya Y., Lopez-Molina L., The Gibberellic Acid Signaling Repressor RGL2 Inhibits Arabidopsis Seed Germination by Stimulating Abscisic Acid Synthesis and ABI5 Activity, The Plant Cell, 2008, 20, 2729–2745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pawłowski T.A., Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids, BMC Plant Biol., 2009, 9, 48

    Article  PubMed Central  PubMed  Google Scholar 

  29. Linkies A., Leubner-Metzger G., Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination, Plant Cell Rep., 2012, 31, 253–270

    Article  CAS  PubMed  Google Scholar 

  30. McCarty D., Hattori T., Carson C., Vasil V., Lazar M., Vasil I., The viviparous-1 developmental gene of maize encodes a novel transcriptional activator, Cell, 1991, 166, 895–905

    Article  Google Scholar 

  31. Walker-Simmons M., ABA Levels and Sensitivity in Developing Wheat Embryos of Sprouting Resistant and Susceptible Cultivars, Plant Physiol., 1987, 84, 61–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wang M., Heimovaara-Dijkstra S., Van Duijn B., Modulation of germination of embryos isolated from dormant and nondormant barley grains by manipulation of endogenous abscisic acid, Planta, 1995, 195, 586–592

    Article  CAS  Google Scholar 

  33. Gómez-Cadenas A., Zentella R., Walker-Simmons M., Ho T-H.D., Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules, Plant Cell, 2001, 13, 667–679

    Article  PubMed Central  PubMed  Google Scholar 

  34. Fennimore S.A., Nyquist W.E., Shaner G.E., Myers S.P., Foley M.E., Temperature response in wild oat (Avena fatua L.) generations segregating for seed dormancy, Heredity, 1998, 81, 674–682

    Article  Google Scholar 

  35. Schwechheimer C., Bevan M., The regulation of transcription factor activity in plants, Trends Plant Sci., 1998, 3, 378–383

    Article  Google Scholar 

  36. Evers T., Millar S., Cereal Grain Structure and Development: Some Implications for Quality, J. Cereal Sci., 2002, 36, 261–284

    Article  Google Scholar 

  37. Helland M.H., Wicklund T., Narvhus J.A., Effect of germination time on α-amylase production and viscosity of maize porridge, Food Res. Int., 2002, 35, 315–321

    Article  CAS  Google Scholar 

  38. Flintham J., Adlam R., Bassoi M., Holdsworth M., Gale M., Mapping genes for resistance to sprouting damage in wheat, Euphytica, 2002, 126, 39–45

    Article  CAS  Google Scholar 

  39. Lin R., Horsley R.D., Schwarz P.B., Associations between caryopsis dormancy, α-amylase activity, and pre-harvest sprouting in barley, J. Cereal Sci., 2008, 48, 446–456

    Article  CAS  Google Scholar 

  40. Moś M., Changes in the germinability and vigour of winter triticale seeds with sprouting damage, Plant Soil Environ., 2003, 49, 126–130

    Google Scholar 

  41. Poljakoff-Mayber A., Popilevski I., Belausov E., Ben-Tal Y., Involvement of phytohormones in germination of dormant and non-dormant oat (Avena sativa L.) seeds, Plant Growth Regul. 2002, 37, 7–16

    Article  CAS  Google Scholar 

  42. Jacobs H., Delcour J.A., Hydrothermal Modifications of Granular Starch, with Retention of the Granular Structure: A Review, J. Agric. Food Chem., 1998, 46, 2895–2905

    Article  CAS  Google Scholar 

  43. Testera R.F., Sommerville M.D., Swelling and Enzymatic Hydrolysis of Starch in Low Water Systems, J. Cereal Sci., 2001, 33, 193–203

    Article  Google Scholar 

  44. Sharopova N.R., Portyanko V.A., Sozinov A.A., Genetics of α-amylases in hexaploid oat species, Biochem. Genet., 1998, 36, 171–182

    Article  CAS  PubMed  Google Scholar 

  45. Zieliński A., Ptak A., Wójtowicz T., Moś M., Susceptibility of naked oat cultivar seeds to mechanical damage, Cent. Eur. J. Biol., 2014, 9(3), 331–340

    Article  Google Scholar 

  46. MacGregor A.E., Relationships Between Structure and Activity in the α-Amylase Family of Starchmetabolising Enzymes, Starch — Stärke, 1993, 45, 232–237

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Zieliński.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zieliński, A., Simlat, M., Wójtowicz, T. et al. Susceptibility of naked oat cultivars to seed sprouting. cent.eur.j.biol. 9, 823–832 (2014). https://doi.org/10.2478/s11535-014-0306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0306-1

Keywords

Navigation