Skip to main content
Log in

Skin extracellular matrix components accelerate the regenerative potential of Lin cells

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Due to their unique properties, bone marrow-derived Lin cells can be used to regenerate damaged tissues, including skin. The objective of our study was to determine the influence of the skin tissue-specific microenvironment on mouse Lin cell proliferation and migration in vitro. Cells were analyzed for the expression of stem/progenitor surface markers by flow cytometry. Proliferation of MACS-purified cells in 3D cultures was investigated by WST-8 assay. Lin cell migration was evaluated by in vitro scratch assay. The results obtained show that basement membrane matrix is more effective for Lin cell proliferation in vitro. However, type I collagen matrix better enhances the re-epithelization process, that depends on the cell migratory properties. These studies are important for preparing cells to be used in transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baraniak P.R., McDevitt T.C., Stem cell paracrine actions and tissue regeneration, Regen. Med., 2010, 5, 121–143

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hipp J., Atala A., Sources of stem cells for regenerative medicine, Stem Cell Rev., 2008, 4, 3–11

    Article  PubMed  Google Scholar 

  3. Wu Y., Zhao R.C.H., Tredget E.E., Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration, Stem Cells, 2010, 28, 905–915

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Yang J., Ii M., Kamei N., Alev C., Kwon S.-M., Kawamoto A., et al., CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow, PloS ONE, 2011, 6, e20219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Herzog E.L., Chai L., Krause D.S., Plasticity of marrow-derived stem cells, Blood, 2003, 102, 3483–3493

    Article  CAS  PubMed  Google Scholar 

  6. Li Ch., Zheng Y., Wang X., Xia W., Gao H., Li D., et al., Bone marrow-derived stem cells contribute skin regeneration in skin and soft tissue expansion, J. Cell. Physiol., 2011, 226, 2834–2840

    Article  CAS  PubMed  Google Scholar 

  7. Watt F.M., Fujiwara H., Cell-extracellular matrix interactions in normal and diseased skin, Cold Spring Harb. Perspect. Biol., 2011, 3, a005124

    Article  PubMed  Google Scholar 

  8. Amadeu T.P., Coulomb B., Desmouliere A., Costa A.M.A., Cutaneous wound healing: myofibroblastic differentiation and in vitro models, Int. J. Low. Extrem. Wounds., 2003, 2, 60–68

    Article  PubMed  Google Scholar 

  9. Liang Ch.-Ch., Park A.Y., Guan J.-L., In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro, Nat. Protoc., 2007, 2, 329–333

    Article  CAS  PubMed  Google Scholar 

  10. Zegers M.M.P., O’Brien L.E., Yu W., Datta A., Mostov K.E., Epithelial polarity and tubulogenesis in vitro, Trends Cell Biol., 2003, 13, 169–176

    Article  CAS  PubMed  Google Scholar 

  11. Oswald J., Boxberger S., Jørgensen B., Feldmann S., Ehninger G., Bornhäuser M., et al., Mesenchymal stem cells can be differentiated into endothelial cells in vitro, Stem Cells, 2004, 22, 377–384

    Article  PubMed  Google Scholar 

  12. Wang Z., Wang Y., Farhangfar F., Zimmer M., Zhang Y., Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts, PLoS ONE, 2012, 7, e40951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Astori G., Soncin S., Lo Cicero V., Siclari F., Sürder D., Turchetto L., et al., Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products, Am. J. Transl. Res., 2010, 2, 285–295

    PubMed Central  PubMed  Google Scholar 

  14. Siggins R.W., Zhang P., Welsh D., LeCapitaine N.J., Nelson S., Stem cells, phenotypic inversion, and differentiation, Int. J. Clin. Exp. Med., 2008, 1, 2–21

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Tárnok A., Ulrich H., Bocsi J., Phenotypes of stem cells from diverse origin, Cytom. Part A, 2010, 77A, 6–10

    Article  Google Scholar 

  16. Kucia M., Ratajczak J., Ratajczak M.Z., Are bone marrow stem cells plastic or heterogenous — that is the question, Exp. Hematol., 2005, 33, 613–623

    Article  PubMed  Google Scholar 

  17. Jamous M., Al-Zoubi A., Khabaz M.N., Khaledi R., Khateeb M.A., Al-Zoubi Z., Purification of mouse bone marrow-derived stem cells promotes ex vivo neuronal differentiation, Cell Transplant., 2010, 19, 193–202

    Article  PubMed  Google Scholar 

  18. Challen G.A., Boles N., Lin K.Y.K., Goodell M.A., Mouse hematopoietic stem cell identification and analysis, Cytometry A, 2009, 75A, 14–24

    Article  Google Scholar 

  19. Ivanova N.B., Dimos J.T., Schaniel C., Hackney J.A., Moore K.A., Lemischka I.R., A stem cell molecular signature, Science, 2002, 298, 601–604

    Article  CAS  PubMed  Google Scholar 

  20. Dawn B., Bolli R., Adult bone marrow-derived cells: regenerative potential, plasticity, and tissue commitment, Basic Res. Cardiol., 2005, 100, 494–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Spees J.L., Whitney M.J., Sullivan D.E., Lasky J.E., Laboy M., Ylostalo J., et al., Bone marrow progenitor cells contribute to repair and remodeling of the lung and heart in a rat model of progressive pulmonary hypertension, FASEB J., 2008, 22, 1226–1236

    Article  CAS  PubMed  Google Scholar 

  22. Yeagy B.A., Harrison F., Gubler M.-C., Koziol J.A., Salomon D.R., Cherqui S., Kidney preservation by bone marrow cell transplantation in hereditary nephropathy, Kidney Int., 2011, 79, 1198–1206

    Article  CAS  PubMed  Google Scholar 

  23. Hodgkinson T., Yuan X.-F., Bayat A., Adult stem cells in tissue engineering, Expert Rev. Med. Devic., 2009, 6, 621–640

    Article  Google Scholar 

  24. Tibbitt M.W., Anseth K.S., Hydrogels as extracellular matrix mimics for 3D cell culture, Biotechnol. Bioeng., 2009, 103, 655–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bott K., Upton Z., Schobback K., Ehrbar M., Hubbel J.A., Lutolf M.P., et al., The effect of matrix characteristics on fibroblast proliferation in 3D gels, Biomaterials, 2010, 31, 8454–8464

    Article  CAS  PubMed  Google Scholar 

  26. Visser M.B., Pollitt C.C., Characterization of extracellular matrix macromolecules in primary cultures of equine keratinocytes, BMC Vet. Res., 2010, 6, 16–24

    Article  PubMed Central  PubMed  Google Scholar 

  27. Penolazzi L., Mazzitelli S., Vecchiatini R., Torreggiani E., Lambertini E., Johnson S., et al., Human mesenchymal stem cells seeded on extracellular matrix-scaffold: viability and osteogenic potential, J. Cell. Physiol., 2012, 227, 857–866

    Article  CAS  PubMed  Google Scholar 

  28. Segal N., Andriani F., Pfeiffer L., Kamath P., Lin N., Satyamurthy K., et al., The basement membrane microenvironment directs the normalization and survival of bioengineered human skin equivalents, Matrix Biol., 2008, 27, 163–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tsai K.-S., Kao S.-Y., Wang C.-Y., Wang Y.-J., Wang J.-P., Hung S.-C., Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways, J. Biomed. Mater. Res., 2010, 94A, 673–682

    CAS  Google Scholar 

  30. Matsubara T., Tsutsumi S., Pan H., Hiraoka H., Oda R., Nishimura M., et al., A new technique to expand human mesenchymal stem cells using basement membrane extracellular matrix, Biochem. Biophys. Res. Commun., 2004, 313, 503–508

    Article  CAS  PubMed  Google Scholar 

  31. Thampatty B.P., Wang J.H.-C., A new approach to study fibroblast migration, Cell Motil. Cytoskel., 2007, 64, 1–5

    Article  CAS  Google Scholar 

  32. Lee C.H., Singla A., Lee Y., Biomedical applications of collagen, Int. J. Pharm., 2001, 221, 1–22

    Article  CAS  PubMed  Google Scholar 

  33. LeBleu V.S., MacDonald B., Kalluri L., Structure and functions of basement membranes, Exp. Biol. Med., 2007, 232, 1121–1129

    Article  CAS  Google Scholar 

  34. Hakkinen K.M., Harunaga J.S., Doyle A.D., Yamada K.M., Direct comparison of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices, Tissue Eng. Part A, 2011, 17, 713–724

    Article  CAS  PubMed  Google Scholar 

  35. O’Toole E.A., Extracellular matrix and keratincyte migration, Clin. Exp. Dermatol., 2001, 26, 525–530

    Article  PubMed  Google Scholar 

  36. Boleman A.I., TĂnasie G., GĂluşcan A., Cristea M.I., Bojin F.M., Panaitescu C., et al., Studies regarding the in vitro wound healing potential of mouse dental pulp stem-like progenitor cells, Biotechnol. & Biotechnol. Eq., 2012, 26, 2781–2785

    Article  Google Scholar 

  37. Li W., Fan J., Chen M., Guan S., Sawcer D., Bokoch G.M., et al., Mechanism of human dermal fibroblast migration driven by type I collagen and platelet-derived growth factor-BB, Mol. Biol. Cell., 2004, 15, 294–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genė Biziulevičienė.

About this article

Cite this article

Ramanauskaitė, G., Žalalytė, D., Kašėta, V. et al. Skin extracellular matrix components accelerate the regenerative potential of Lin cells. cent.eur.j.biol. 9, 367–373 (2014). https://doi.org/10.2478/s11535-013-0283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0283-9

Keywords

Navigation