Central European Journal of Biology

, Volume 9, Issue 4, pp 383–395 | Cite as

Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato

  • Zoltán Pék
  • Péter Szuvandzsiev
  • Hussein Daood
  • András Neményi
  • Lajos Helyes
Research Article
  • 254 Downloads

Abstract

A two-year (2010 and 2011) open field experiment was conducted to study the effect of drip irrigation and seasonal variation on the yield parameters and main bioactive components, carotenoids (mainly all trans, cis lycopene, and β-carotene), polyphenols (chlorogenic acid, caffeic acid, gallic acid, quercetin, rutin, naringin, etc.), and tocopherols of processing Strombolino F1 cherry tomatoes. The irrigated plants (STI) gave a higher marketable yield (61% and 101% respectively), and rain fed plants showed a yield loss. Water supply had a strong positive (R2=0.98) effect on marketable yield in 2011, but weak (R2=0.69) in 2010. In both years, the antioxidant concentration (all carotenoids, total polyphenols, tocopherols) showed a decrease with irrigation. Water supply affected the composition of carotenoids to a considerable extent. The optimum water supply treatment gave a lower proportion of lycopene than the rain fed control (STC) treatment. We observed significant negative correlation between rutin concentration and irrigation. The α-tocopherol concentration was significantly higher in STC treatments. Irrigation negatively influenced antioxidant concentrations of cherry tomato fruits, but higher yield could account for the concentration loss of individual fruits by higher antioxidant production per unit area.

Keywords

Water supply Carotenoids Phenolics Tocopherols Processing cherry tomato 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    World Health Organization Diet, nutrition, and the prevention of chronic diseases, Report of a WHO Study Group, WHO Tech. Rep. Ser., 1990, 916, 148Google Scholar
  2. [2]
    Clinton S.K., Emenhiser C., Schwartz S.J., Cistrans lycopene isomers, carotenoids, and retinol in the human prostate, Cancer Epidemiol. Biomark. Prev., 1996, 5, 35–51Google Scholar
  3. [3]
    Zegbe-Domínguez J.A., Behboudian M.H., Lang A., Clothier B.E., Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in ‘Petopride’ processing tomato (Lycopersicon esculentum Mill), HortSci., 2003, 98, 505–510CrossRefGoogle Scholar
  4. [4]
    Battilani A., Solimando D., Plauborg F.L., Andersen M.N., Jensen C.R., Sandei L., Water saving irrigation strategies for processing tomato, Acta Hort., 2009, 832, 69–76Google Scholar
  5. [5]
    Dorais M., Ehret D.L., Papadopoulos A.P., Tomato (Solanum lycopersicum) health components: from the seed to the consumer, Phytochem. Rev., 2008, 7, 231–250CrossRefGoogle Scholar
  6. [6]
    Orcutt D.M., Nilsen E.T., The physiology of plants under stress: Soil and biotic factors, New York, John Wiley & Sons Inc., 2000Google Scholar
  7. [7]
    Pernice R., Parisi M., Giordano I., Pentangelo A., Graziani G., Gallo M., Fogliano V., Ritieni A., Antioxidants profile of small tomato fruits: Effect of irrigation and industrial process, Sci. Hort., 2010, 126, 156–163CrossRefGoogle Scholar
  8. [8]
    Liu K., Zhang T.Q., Tan C.S., Astatkie T., Responses of fruit yield and quality of processing tomato to drip-irrigation and fertilizers phosphorus and potassium, Agronomy J., 2011, 103, 1339–1345CrossRefGoogle Scholar
  9. [9]
    Patanè C., Cosentino S.L., Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate, Agr. Water Management, 2010, 97, 131–138CrossRefGoogle Scholar
  10. [10]
    Favati F., Lovelli S., Galgano F., Miccolis V., Di Tommaso T., Candido V., Processing tomato quality as affected by irrigation scheduling, Sci. Hort., 2009, 122, 562–571CrossRefGoogle Scholar
  11. [11]
    Matos H.R., di Mascio P., Medeiros M. H., Protective effect of lycopene on lipid peroxidation and oxidative DNA damage in cell cultures, Arch. Biochem. Biophys., 2000, 383, 56–59PubMedCrossRefGoogle Scholar
  12. [12]
    Di Mascio P., Kaiser S., Sies H., Lycopene as the most efficient biological carotenoid singlet oxygen quencher, Arch. Biochem. Biophys., 1989, 274, 532–538PubMedCrossRefGoogle Scholar
  13. [13]
    Brandt S., Pék Z., Barna É., Lugasi A., Helyes L., Lycopene content and colour of ripening tomatoes as affected by environmental conditions, J. Sci. Food Agr., 2006, 86, 568–572CrossRefGoogle Scholar
  14. [14]
    Helyes L., Lugasi A., Pék Z., Tomato fruit quality and content depend on stage of maturity, HortSci., 2006, 41, 1400–1401Google Scholar
  15. [15]
    Pék Z., Helyes L., Lugasi A., Color changes and antioxidant content of vine and post-harvest ripened tomato fruits, HortSci., 2010, 45, 466–468Google Scholar
  16. [16]
    Riggi E., Patanè C., Ruberto G., Content of carotenoids at different ripening stages in processing tomato in relation to soil water availability, Australian J. Agric. Res., 2008, 59, 348–353CrossRefGoogle Scholar
  17. [17]
    Parr A.J. Bolwell G.P., Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile, J. Sci. Food Agr., 2000, 80, 985–1012CrossRefGoogle Scholar
  18. [18]
    Helyes L. Lugasi A., Formation of certain compounds having technological and nutritional importance in tomato fruits during maturation, Acta Alim., 2006, 35, 183–193CrossRefGoogle Scholar
  19. [19]
    Barbagallo R.N., Silvestro I.D., Patanè C., Yield, physicochemical traits, antioxidant pattern, polyphenol oxidase activity and total visual quality of field-grown processing tomato cv. Brigade as affected by water stress in Mediterranean climate, J. Sci. Food Agr., 2013, 93, 1449–1457CrossRefGoogle Scholar
  20. [20]
    Helyes L., Lugasi A., Pék Z., Effect of irrigation on processing tomato yield and antioxidant components, Turk. J. Agr. For., 2012, 36, 702–709Google Scholar
  21. [21]
    Helyes L., Bőcs A., Lugasi A., Pék Z., Tomato antioxidants and yield as affected by different water supply, Acta Hort., 2012, 936, 213–218Google Scholar
  22. [22]
    Abushita A.A., Daood H.G., Biacs P.A., Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors, J. Agr. Food. Chem., 2000, 48, 2075–2081CrossRefGoogle Scholar
  23. [23]
    Seybold C., Frohlich K., Bitsch R., Otto K., Bohm V., Changes in contents of carotenoids and vitamin E during tomato processing, J. Agr. Food Chem., 2004, 52, 7005–7010CrossRefGoogle Scholar
  24. [24]
    Abushita A.A., Hebshi E.A., Daood H.G., Biacs P.A.. Determination of antioxidant vitamins in tomatoes, Food Chem., 1997, 60, 207–212CrossRefGoogle Scholar
  25. [25]
    Hanson P.M., Yang R.Y., Wu J., Chen J.T., Ledesma D., Tsou S.C.S., Lee T.C., Variation for antioxidant activity and antioxidants in tomato, J. Amer. Soc. Hort. Sci., 2004, 129, 704–711Google Scholar
  26. [26]
    Løvdal T., Olsen K.M., Slimestad R., Verheul M., Lillo C., Synergetic effects of nitrogen depletion temperature and light on the content of phenolic compounds and gene expression in leaves of tomato, Phytochem., 2010, 71, 605–613CrossRefGoogle Scholar
  27. [27]
    Helyes L., Varga Gy., Irrigation demand of tomato according to the results of three decades, Acta Hort., 1994, 376, 323–328Google Scholar
  28. [28]
    Hungarian Meteorological Service, Temperature forecast of Gödöllő, 15 Aug. 2011, 〈http://www.met.hu/idojaras/elorejelzesGoogle Scholar
  29. [29]
    Biacs P.A., Daood H.G., High-performance liquid chromatography with diode-array detection of carotenoids and carotenoid esters in fruits and vegetables, J. Plant Physiol., 1994, 143, 520–525CrossRefGoogle Scholar
  30. [30]
    Daood H.G., Pék Z., Palotás G., Sidikov A., Helyes L., Separation of carotenoids from tomatoes by HPLC using cross-linked C18 column and MS detection, J. Chromatogr. Sci., 2013, (in press)Google Scholar
  31. [31]
    Speek A.T., Schrijver F., Shreurs H.P., Vitamin E composition of some oils as determined by HPLC with fluorometric detection, J. Food Sci., 1985, 50, 121–122CrossRefGoogle Scholar
  32. [32]
    Pék Z., Daood H., Nagyné M.G., Neményi A., Helyes L., Effect of environmental conditions and water status on the bioactive compounds of broccoli, Cent. Eur. J. Biol., 2013, 8, 777–787CrossRefGoogle Scholar
  33. [33]
    Wudiri B.B., Henderson D.W., Effects of water stress on flowering and fruit set in processingtomatoes, Scientia Hort., 1985, 27, 189–198CrossRefGoogle Scholar
  34. [34]
    Bőcs A., Helyes L., Pék Z., Simultaneous impact of the different water supply and year type on processing tomato yield, Intl. J. Hort. Sci., 2011, 17, 79–81Google Scholar
  35. [35]
    Domínguez E., Fernández M.D., Hernández J.C.L., Parra J.P., España L., Heredia A., Cuartero J. Tomato fruit continues growing while ripening affecting cuticle properties and cracking, Physiol. Plant., 2012, 146, 473–486PubMedCrossRefGoogle Scholar
  36. [36]
    Tomes M.L., Temperature inhibition of carotene synthesis in tomato, Bot. Gaz. 1963, 124, 180–185CrossRefGoogle Scholar
  37. [37]
    Dumas Y., Dadomo M., Di Lucca G., Grolier P., Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes, J. Sci. Food Agr., 2003, 83, 369–382CrossRefGoogle Scholar
  38. [38]
    Kuti J.O., Konuru H.B., Effects of genotype and cultivation environment on lycopene content in redripe tomatoes, J. Sci. Food Agr., 2005, 85, 2021–2026CrossRefGoogle Scholar
  39. [39]
    Helyes L., Pék Z., Lugasi A., Function of the variety technological traits and growing conditions on fruit components of tomato (Lycopersicon lycopersicum L Karsten), Acta Alim., 2008, 37, 427–436CrossRefGoogle Scholar
  40. [40]
    Pék Z., Szuvandzsiev P., Neményi A., Helyes L., Lugasi A., The effect of natural light on changes in antioxidant content and color parameters of vineripened tomato (Solanum lycopersicum L.) fruits, HortSci., 2011, 46, 583–585Google Scholar
  41. [41]
    Riga P., Anza M., Garbisu C., Tomato quality is more dependent on temperature than on photosynthetically active radiation, J. Sci. Food Agr., 2008, 88, 158–166CrossRefGoogle Scholar
  42. [42]
    Chandra H.M., Ramalingam S., Antioxidant potentials of skin, pulp, and seed fractions of commercially important tomato cultivars, Food Sci. Biotechnol., 2011, 20, 15–21CrossRefGoogle Scholar
  43. [43]
    Ilahy R., Hdider C., Lenucci M.S., Tlili I., Dalessandro G., Antioxidant activity and bioactive compound changes during fruit ripening of highlycopene tomato cultivars, J. Food Compos. Anal. 2011, 24, 588–595CrossRefGoogle Scholar
  44. [44]
    Toor R.K., Lister C.E., Savage G.P., Antioxidant activities of New Zealand-grown tomatoes, Intl. J. Food Sci. Nutr., 2005, 56, 597–605CrossRefGoogle Scholar
  45. [45]
    Sánchez-Rodríguez E., Ruiz J.M., Ferreres F., Moreno D.A., Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique, Food Chem., 2012, 134, 775–782PubMedCrossRefGoogle Scholar
  46. [46]
    Svelander C.A., Tibäck E.A., Ahrné L.M., Langton M.I.B.C., Svanberg U.S.O., Alminger M.A.G., Processing of tomato: Impact on in vitro bioaccessibility of lycopene and textural properties, J. Sci. Food Agr., 2010, 90, 1665–1672CrossRefGoogle Scholar
  47. [47]
    Slimestad R., Verheul M.J., Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars, J. Sci. Food Agr., 2009, 89, 1255–1270CrossRefGoogle Scholar
  48. [48]
    Fu L., Xu B.T., Xu X.R., Gan R.Y., Zhang Y., Xia E.Q., Li H.B., Antioxidant capacities and total phenolic contents of 62 fruits, Food Chem., 2011, 129, 345–350CrossRefGoogle Scholar
  49. [49]
    Incerti A., Navari-Izzo F., Pardossi A., Izzoa R., Seasonal variations in polyphenols and lipoic acid in fruits of tomato irrigated with sea water. J. Sci. Food Agr., 2009, 89, 1326–1331CrossRefGoogle Scholar
  50. [50]
    Gundogdu M., Muradoglu F., Sensoy R.I.G., Yilmaz H., Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra L. by HPLC, Scientia Hort., 2011, 132, 37–41CrossRefGoogle Scholar
  51. [51]
    Slimestad R., Verheul M.J., Seasonal variations in the level of plant constituents in greenhouse production of cherry tomatoes, J. Agr. Food Chem., 2005, 53, 3114–3119CrossRefGoogle Scholar
  52. [52]
    Gautier H., Diakou-Verdin V., Bénard C., Reich M., Buret M., Bourgaud F., Poëssel J.L., Caris-Veyrat C., Génard M., How does tomato quality (sugar acid and nutritional quality) vary with ripening stage temperature and irradiance, J. Agr. Food Chem., 2008, 56, 1241–1250CrossRefGoogle Scholar
  53. [53]
    Wilkens R.T., Spoerke J.M., Stamp N.E., Differential responses of growth and two soluble phenolics of tomato to resource availability, Ecol. 1996, 77, 247–258CrossRefGoogle Scholar
  54. [54]
    Hwang E.S., Stacewicz-Sapuntzakis M., Bowen P.E., Effects of Heat Treatment on the Carotenoid and Tocopherol Composition of Tomato, J. Food Sci., 2012, 77, C1109–C1114PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Zoltán Pék
    • 1
  • Péter Szuvandzsiev
    • 1
  • Hussein Daood
    • 2
  • András Neményi
    • 1
  • Lajos Helyes
    • 1
  1. 1.Institute of HorticultureSzent István UniversityGödöllőHungary
  2. 2.Regional Science CenterSzent István UniversityGödöllőHungary

Personalised recommendations