Central European Journal of Biology

, Volume 9, Issue 4, pp 374–382 | Cite as

QTL mapping for germination of seeds obtained from previous wheat generation under drought

  • Ilona Czyczyło-MyszaEmail author
  • Izabela Marcińska
  • Edyta Skrzypek
  • Katarzyna Cyganek
  • Katarzyna Juzoń
  • Małgorzata Karbarz
Research Article


The QTLs controlling germination and early seedling growth were mapped using seeds acquired from mapping population and parental lines of Chinese Spring and SQ1 grown under water-limited conditions, severe drought (SDr) and well-watered plants (C). Germination ability was determined by performing a standard germination test based on the quantification of the germination percentage (GP24) of seeds incubated for 24 h at 25°C in the dark. Early seedling growth was evaluated on the basis of the length of the root and leaf at the 6th day of the experiment. QTLs were identified by composite interval mapping method using Windows QTLCartographer 2.5 software. For the traits studied, a total of thirty eight additive QTLs were identified. Seventeen QTLs were mapped in C on chromosomes: 1A, 2A, 7A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 2D, 3D, 4D and 6D, while twenty one QTLs were identified in SDr on chromosomes: 1A, 2A, 5A, 2B, 3B, 4B, 5B, 6B, 7B, 3D, 5D and 6D. Most of the QTLs for GP and early leaf growth parameters were clustered on chromosome 4B (associated with the Rht-B1 marker) both in C and SDr plants. The results indicate the complex and polygenic nature of germination.


Germination Leaf Root Quantitative trait loci Triticum aestivum L. 



quantitative trait loci


double haploid


control (well-watering)


severe drought


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Austin R.B., Prospect for improving crop production in stressful environments, In: Jones H.G., Flowers T.J., Jones M.B. (Eds), Plants under stress. Biochemistry, physiology and ecology and their application to plant improvement, Cambridge University Press, Cambridge, 1989Google Scholar
  2. [2]
    Zagdańska B., Mechanisms of grains resistance to soil drought: energy metabolism of spring wheat in the acquisition of resistance [Mechanizmy odporności zbóż na suszę glebową: metabolizm energetyczny pszenicy jarej w nabywaniu odporności], Biul. IHAR, 1997, 203, 41–55 (in Polish)Google Scholar
  3. [3]
    Leopold A.C., Coping with desiccation. In: Alscher R.G. and Cumming J.R., Stress responses in plants: Adaptation and Acclimation Mechanisms, Willy-Liss, New York, 1990, 37–56Google Scholar
  4. [4]
    Lewak S., Seeds’ germination [KieŁkowanie nasion], In: Kopcewicz J., Lewak S. (Eds). Plant Physiology [Fizjologia roślin], 1st ed., PWN, Warszawa, 1998 (in Polish)Google Scholar
  5. [5]
    Contreras S., Barros M., Vigor tests on lettuce seeds and their correlation with emergence, Cien. Inv. Agr., 2005, 32(1), 3–10Google Scholar
  6. [6]
    Bewley J.D., Black M., Seeds-physiology of development and germination, 2nd Edn, Plenum Press, New York, 1994Google Scholar
  7. [7]
    Bettey M., Finch-Savage W.E., King G.J., Lynn J.R., Quantitative genetic analysis of seed vigor and pre-emergence seedling growth traits in Brassica oleracea, New Phytol., 2000, 148, 227–286CrossRefGoogle Scholar
  8. [8]
    Zhang Z.H., Yu S.B., Yu T., Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.), Field Crop Res., 2005, 91(2–3), 161–170CrossRefGoogle Scholar
  9. [9]
    Collard B.C.Y, Jahufer M.Z.Z, Brouwer J.B., Pang E.C.K., An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts, Euphytica, 2005, 142, 169–196CrossRefGoogle Scholar
  10. [10]
    Landjeva S., Neumann K., Lohwasser U., Börner A., Molecular mapping of genomic regions associated with growth response to osmotic stress in wheat seedling, Biol. Plant., 2008, 52, 259–266CrossRefGoogle Scholar
  11. [11]
    Cui K.H., Peng S.B., Xing Y.Z., Xu C.G., Yu S.B., Zhang Q., Molecular dissection of seedling-vigor and associated physiological traits in rice, Theor. Appl. Genet., 2002, 105, 745–753PubMedCrossRefGoogle Scholar
  12. [12]
    Edney M.J., Mather D.E., Quantitative trait loci affecting germination traits and malt friability in a two-rowed by six-rowed barley cross, J. Cereal Sci., 2004, 39, 283–290CrossRefGoogle Scholar
  13. [13]
    Al Chaarani G.R., Gentzbittel L., Wędzony M., Sarrafi A., Identification of QTLs for germination and seeding development in sunflower (Helianthus annus L.), Plant Sci., 2005, 169, 221–227CrossRefGoogle Scholar
  14. [14]
    Rebetzke G.J., Richards R.A., Fischer V.M., Mickelson B.J., Breeding long coleoptile, reduced height wheats, Euphytica, 1999, 106, 159–168CrossRefGoogle Scholar
  15. [15]
    Rebetzke G.J., Richards R.A., Sirault X.R.R., Morrison A.D., Genetic analysis of coleoptile length and diameter of wheat, Aust. J. Agric. Res., 2004, 55, 733–743CrossRefGoogle Scholar
  16. [16]
    Rebetzke G.J., Richards R.A., Fettel N.A., Long M., Condon A.G., Botwright T.L., Genotypic increase in coleoptiles length improves wheat establishment, early vigour and grain yield with deep sowing, Field Crop Res., 2007, 100, 10–23CrossRefGoogle Scholar
  17. [17]
    Rebetzke G.J., Ellis M.H., Bonnett D.G., Richards R.A., Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.), Theor. Appl. Genet., 2007, 1,14, 1173–1183CrossRefGoogle Scholar
  18. [18]
    Nawroz Abdul-Razzak T., Germination characteristics and molecular characterization of some wheat varieties in Sulaimanyah by SSR Marker, Turkish Journal of Biology, 2010, 34(2), 109–117Google Scholar
  19. [19]
    Angaji S.A., Mapping QTLs for submergence tolerance during germination in rice, Afr. J. Biotechnol., 2008, 7(15), 2551–2558Google Scholar
  20. [20]
    Baretto Dias P.M.B., Brunel-Muguet S., Dürr C., Huguet T., Demilly D., Wagner M. H., Teulat-Merah B., QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula, 2011, Theor. Appl. Genet., 122, 429–444CrossRefGoogle Scholar
  21. [21]
    Foolad M.R., Lin G.Y., Chen F.Q., Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato, Plant Breed., 1999, 118, 167–173CrossRefGoogle Scholar
  22. [22]
    Limami A.M., Rouillon C., Glevarec G., Gallais A., Hirel B., Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase, Plant Physiol., 2002, 130, 1860–1870PubMedCentralPubMedCrossRefGoogle Scholar
  23. [23]
    Quarrie S.A., Steed A., Calestani C., Semikhodskii A., Lebreton C., Chinoy C., et al., A high density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments, Theor. Appl. Genet., 2005, 110, 865–880PubMedCrossRefGoogle Scholar
  24. [24]
    CzyczyŁo-Mysza I., Tyrka M., Marcińska I., Skrzypek E., Karbarz M., Dziurka M., et al., Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin, Mol. Breed., 2013, 32, 189–21PubMedCentralPubMedCrossRefGoogle Scholar
  25. [25]
    Czyczylo-Mysza I., Marcińska I., Skrzypek E., Chrupek M., Grzesiak S., Hura T., et al., Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability, Plant Genetic Resources: Characterization and Utilization, 2011, 9(2), 291–295CrossRefGoogle Scholar
  26. [26]
    Marcińska I., CzyczyŁo-Mysza I., Skrzypek E., Filek M., Grzesiak S., Grzesiak M.T., et al., Impact of osmotic stress on physiological and biochemical characteristics in drought susceptible and drought resistant wheat genotypes, Acta Physiol. Plant, 2013, 35, 451–461CrossRefGoogle Scholar
  27. [27]
    Wang S., Basten C.J., Zeng Z.B., Windows QTL Cartographer, new version, statistical Genetics, North Carolina State University, 2007Google Scholar
  28. [28]
    AOSA, Rules for testing seeds, Association of official seed analysts, AOSA, Lincoln, 1999Google Scholar
  29. [29]
    ISTA, International rules for seed testing. International Seed Testing Association, Basserdorf, 2008Google Scholar
  30. [30]
    ter Steege M.W., den Ouden F.M., Lambers H., Stam P., Peeters A.J.M., Genetic and physiological architecture of early vigor in Aegilops tauschii, the D-genome donor of hexaploid wheat. A quantitative trait loci analysis, Plant Physiol., 2005, 139, 1078–1094PubMedCentralPubMedCrossRefGoogle Scholar
  31. [31]
    Pieta Filho C., Ellis R.H., The development of seed quality in spring barley in four environments. I. Germination and longevity, Seed Sci. Res., 1991, 1, 163–177Google Scholar
  32. [32]
    Appa Rao S., Kameswara Rao N., Mengesha M.H., Germinability and seedling vigor of pearl millet seeds harvested at different stages of maturity, Field Crops Res., 1993, 32, 141–145CrossRefGoogle Scholar
  33. [33]
    Stefani A., Meletti P., Onnis A., Low temperature storage of caryopses of Triticum durum: viability and longevity, Ann. Bot., 2000, 85, 403–406CrossRefGoogle Scholar
  34. [34]
    Hrstková P., Chloupek O., Bébarová J., Estimation of barley seed vigour with respect to variety and provenance effects, Czech J. Genet. Plant. Breed., 2006, 42, 44–49Google Scholar
  35. [35]
    Aparicio N., Villegas D., Araus J.L., Blanco R., Royo C., Seedling development and biomass as affected by seed size and morphology in durum wheat, J. Agric. Sci., 2002, 139, 143–150CrossRefGoogle Scholar
  36. [36]
    Eagles H.A., Hollamby G.J., Gororo N.N., Eastwood R.F., Estimation and utilization of glutenin gene effects from the analysis of unbalanced data from wheat breeding programs, Aust. J. Agric. Res., 2002, 53, 367–377CrossRefGoogle Scholar
  37. [37]
    Dubcovsky J., Marker-assisted selection in public breeding programs: the wheat experience, Crop Sci., 2004, 44, 1895–1898CrossRefGoogle Scholar
  38. [38]
    Paterson A.H., Tanskley S.D., Sorrells M.E., DNA markers in plant improvement, Adv. Agron., 1991, 46, 39–90CrossRefGoogle Scholar
  39. [39]
    Young N.D., A cautiously optimistic vision for marker-assisted selection, Mol. Breed., 1999, 5, 505–510CrossRefGoogle Scholar
  40. [40]
    Dekkers J.C.M., Hospital F., The use of molecular genetics in the improvement of agricultural populations, Nat. Rev. Genet., 2002, 3, 22–32PubMedCrossRefGoogle Scholar
  41. [41]
    Villar R., Veneklaas E.J., Jordano P., Lambers H., Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species, New Phytol., 1998, 140, 425–437CrossRefGoogle Scholar
  42. [42]
    Bultynck L., ter Steege M.W., Schortemeyer M., Poot P., Lambers H., From individual leaf elongation to whole shoot leaf area expansion; a comparison of three Aegilops and two Triticum species, Ann. Bot., 2004, 94, 99–108PubMedCrossRefGoogle Scholar
  43. [43]
    Tranbarger T.J., Forward B.S., Misra S., Regulation of NADPH-cytochrome P450 reductase expressed during Douglas-fir germination and seedling development, Plant Mol. Biol., 2000, 44, 141–153PubMedCrossRefGoogle Scholar
  44. [44]
    Imai A., Matsuyama T., Hanzawa Y., Akiyama T., Tamaoki M., Saji H., et al., Spermidine synthase genes are essential for survival of Arabidopsis, Plant Physiol., 2004, 135, 1565–1573PubMedCentralPubMedCrossRefGoogle Scholar
  45. [45]
    Landjeva S., Lohwasser U., Börner A., Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth, Euphytica, 2010, 171, 129–1CrossRefGoogle Scholar
  46. [46]
    Quarrie S.A., Pekic Quarrie S., Radosevic R., Rancic D., Kaminska A., Barnes J.D., et al., Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes, J. Exp. Bot., 2006, 57, 2627–2637PubMedCrossRefGoogle Scholar
  47. [47]
    Börner A., Schumann E., Furste A., Cöster H., Leithold B., Röder M.S., et al., Mapping of quantitative trait loci determining agronomically important characters in hexaploid wheat (Triticum aestivum L.), Theor. Appl. Genet., 2002, 105, 921–936PubMedCrossRefGoogle Scholar
  48. [48]
    Groos C., Robert N., Bervas E., Charmet G., Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat, Theor. Appl. Genet., 2003, 106, 1032–1040PubMedGoogle Scholar
  49. [49]
    McCartney C.A., Somers D.J., Humphreys D.G., Lukow O., Ames N., Noll J., et al., Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’, Genome, 2005, 48, 870–883PubMedCrossRefGoogle Scholar
  50. [50]
    Habash D.Z., Bernard S., Schondelmaier J., Weyen J., Quarrie S.A., The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield, Theor. Appl. Genet., 2007, 114, 403–419PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Ilona Czyczyło-Mysza
    • 1
    Email author
  • Izabela Marcińska
    • 1
  • Edyta Skrzypek
    • 1
  • Katarzyna Cyganek
    • 1
  • Katarzyna Juzoń
    • 1
  • Małgorzata Karbarz
    • 2
    • 3
  1. 1.The F. Górski Institute of Plant PhysiologyPolish Academy of SciencesKrakówPoland
  2. 2.Institute of Applied Biotechnology and Basic SciencesUniversity of RzeszowKolbuszowaPoland
  3. 3.Centre of Applied Biotechnology and Basic SciencesUniversity of RzeszowKolbuszowaPoland

Personalised recommendations