Skip to main content
Log in

Assessment of flora diversity in a minor river valley using ecological indicator values, Geographical Information Systems and Digital Elevation Models

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Ellenberg indicator values (EIV) have been widely used to estimate habitat variables from floristic data and to predict vegetation composition based on habitat properties. Geographical Information Systems (GIS) and Digital Elevation Models (DEM) are valuable tools for studying the relationships between topographic and ecological characters of river systems. A 3-meter resolution DEM was derived for a. 3-km-long break section of the Szum River (SE Poland) from a 1:10,000 topographic map. Data on the diversity and ecological requirements of the local vascular flora were obtained while making floristic charts for 32 sections of the river valley (each 200 m long) and physical and chemical soil measurements; next, the data were translated into EIV. The correlations of the primary and secondary topographic attributes of the valley, species richness, and EIV (adapted for the Polish vascular flora) were assessed for all species recognized in each valley section. The total area and proportion of a flat area, mean slope, slope curvature, solar radiation (SRAD), and topographic wetness index (TWI) are the most important factors influencing local flora richness and diversity. The highest correlations were found for three ecological indicators, namely light, soil moisture, and soil organic content. The DEM seems to be useful in determination of correlations between topographic and ecological attributes along a minor river valley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forman R.T.T., Godron M., Patches and structural compoments for a landscape ecology, BioSci., 1981, 31, 733–740

    Article  Google Scholar 

  2. Kolasa J., Rolle C.D., Introduction. The hetereogeneity of hetereogeneity: a glossary, In: Kolasa J., Pickett S.T.A., (Eds.), Ecological Heterogeneity, Springer-Verlag, New York, 1999

    Google Scholar 

  3. Lyon J., Sagers C.L., Structure of herbaceous plant assemblages in a forested riparian landscape, Plant Ecol., 1998, 138, 1–16

    Article  Google Scholar 

  4. Tabacci E., Correll D.L., Hauer R., Pinay G., Planty-Tabacci A.M., Wissmar R.C., Development, maintenance and role of riparian vegetation in the river landscape, Freshwater Biol., 1998, 40, 497–516

    Article  Google Scholar 

  5. Czarnecka B., Janiec B., Factors affecting the distribution and properties of forest soils in river breaks of Roztocze, Acta Agrophys., 2000, 50, 81–93

    Google Scholar 

  6. Czarnecka B., Janiec B., River Breaks of Roztocze as Model Objects in Enviromental Education [Przełomy rzeczne Roztocza jako modelowe obiekty w edukacji ekologicznej], Wyd. UMCS, Lublin, 2002 (in Polish with English summary)

    Google Scholar 

  7. Werner K.J., Zedler J.B., How sedge meadows, soils, microtopography, and vegetation respond to sedimentation, Wetlands, 2002, 22, 451–466

    Article  Google Scholar 

  8. Langhans S.D., Tiegs S.D., Uehlinger U., Tockner K., Environmental heterogeneity controls organicmatter dynamics in river floodplain ecosystems, Pol. J. Ecol., 2006, 54, 675–680

    Google Scholar 

  9. Angiolini C., Nucci A., Frigniani F., Landi M., Using multivariate analyses to assess effects of fluvial type on plant species distribution in a Mediterranean river, Wetlands, 2011, 31, 167–177

    Article  Google Scholar 

  10. Jolley R.L., Lockaby B.G., Cavalcanti G.G., Changes in riparian forest composition along a sedimentation rate gradient, Plant Ecol., 2010, 210, 317–330

    Article  Google Scholar 

  11. Decocq G., Patterns of plant species and community diversity at different organization levels in a forested riparian landscape, J. Veg. Sci., 2002, 13, 91–106

    Article  Google Scholar 

  12. Bond E.M., Chase J.M., Biodiversity and ecosystem functioning at local and regional scales, Ecol. Lett., 2002, 5, 467–470

    Article  Google Scholar 

  13. Ward J.V., Tockner K., Arscott D.B., Claret C., Riverine landscape diversity, Freshwater Biol., 2002, 47, 517–539

    Article  Google Scholar 

  14. Francis R.A., Tibaldeschi P., McDougall L., Fluvially-deposited large wood and riparian plant diversity, Wetland Ecol. Manage., 2008, 16, 371–382

    Article  CAS  Google Scholar 

  15. Williams D.C., Lyon J.G., Use of a geographic information system data base to measure and evaluate wetland changes in the St. Marys River, Michigan, Hydrobiologia, 1991, 219, 83–95

    Article  Google Scholar 

  16. Muller E., Mapping riparian vegetation along rivers: old concepts and new methods. Special issue: Geographic information systems and remote sensing in aquatic botany, Aquatic Bot., 1997, 58, 411–437

    Article  Google Scholar 

  17. Mantilla R., Gupta V.K., A GIS numerical framework to study the process basis on scaling statistics in river networks, IEEE Geosci. Remote Sens. Lett., 2005, 2, 404–408

    Article  Google Scholar 

  18. Mendas A., The contribution of the digital elevation models and geographic information systems in a watershed hydrologic research, Appl. Geomatics, 2010, 2, 33–42

    Article  Google Scholar 

  19. Dunn W.C., Milne B.T., Mantilla R., Gupta V.K., Scaling relation between riparian vegetation and stream order in the Whitewater River Network, Kansas, USA, Landscape Ecol., 2011, 26, 983–977

    Article  Google Scholar 

  20. Czarnecka B., Chabudziński Ł., Vegetation landscapes of a small-scale river valley in the light of the GIS analysis, Probl. Landscape Ecol., 2011, 20, 293–299

    Google Scholar 

  21. Radhakrishnan N., Elango L., Study of influence of terrain and climatic factors on groundwater-level fluctuation in a minor river basin using GIS, Geo-Spatial Inform. Sci., 2011, 14, 190–197

    Article  Google Scholar 

  22. Pfeffer K., Pebesma E.J., Burrough P.A., Mapping alpine vegetation using vegetation observations and topographic attributes, Landscape Ecol., 2003, 18, 759–776

    Article  Google Scholar 

  23. Perez A., Francois M.J., Velázquez A., Vázquez L., Modeling vegetation diversity types in Mexico based upon topographic features, INCI, 2008, 33, 88–95

    Google Scholar 

  24. Ter Braak C.J.F., Šmilauer P., CANOCO reference manual and CanoDraw for Windows. User’s guide: software for canonical community ordination, Version 4.5, Microcomputer Power, Ithaca, 2002

    Google Scholar 

  25. Lepš J., Šmilauer P., Multivariate analysis of ecological data using Canoco, Cambridge Univ. Press, Cambridge, 2003

    Google Scholar 

  26. Seidling W., Ground floor vegetation assessment within the intensive (Level II) monitoring of forest ecosystems in Germany: chances and challenges, Eur. J. Forest Res., 2005, 124, 301–312

    Article  Google Scholar 

  27. Petřik P., Wild J., Environmental correlates of the patterns of plant distribution at the meso-scale: a case study from Northern Bohemia (Czech Republic), Preslia, 2006, 78, 211–234

    Google Scholar 

  28. Kopecký M., Čižkova Š., Using topographic wetness index in vegetation ecology: does the algorithm matter?, Appl. Veg. Sci., 2010, 13, 450–459

    Article  Google Scholar 

  29. Buraczyński J., tRoztocze. Structure — Relief — Landscape [Roztocze. Budowa — rzeźba — krajobraz], Zakł. Geogr. Region., Wyd. UMCS, Lublin, 1997 (in Polish)

    Google Scholar 

  30. Czarnecka B., Janiec B., Abiotic conditions affecting the biodiversity of the ‘Szum’ landscape reserve in Roztocze, Ekologia (Bratislava), 2001, 20,Suppl. 4, 207–214

    Google Scholar 

  31. Czarnecka B., Plant cover of the Szum river valley (Roztocze, South-East Poland), Acta Soc. Bot. Pol., 2005, 74, 43–51

    Article  Google Scholar 

  32. Dobrzański B., Uziak S., Klimowicz Z., Melke J., Laboratory and field studies of soils [Badanie gleb w laboratorium i w polu], Wyd. UMCS, Lublin, 1992 (in Polish)

    Google Scholar 

  33. Sapek A., Sapek B., Methods of chemical analysis of organic soils [Metody analizy chemicznej gleb organicznych], IMUZ, Falenty, 1997 (in Polish)

    Google Scholar 

  34. Hengl T., Finding the right pixel size. Comp. Geosci., 2006, 32: 1283–1298

    Article  Google Scholar 

  35. Kraak M., Ormeling F., Cartography [Kartografia]. Visualisation of Spatial Data [Wizualizacja danych przestrzennych], PWN, Warszawa, 1998 (in Polish)

    Google Scholar 

  36. Gallant J.C., Willson J.P., Primary topographic attributes, In: Willson J.P., Gallant J.C., (Eds), Terrain Analysis. Principles and Applications, John Wiley and Sons, New York, 2000

    Google Scholar 

  37. Ellenberg H., Indicator values of vascular plants of Central Europe [Zeigerwerte der Gefäßpflanzen Mitteleuropas], Scr. Geobot., 1974, 9, 9–160 (in German)

    Google Scholar 

  38. Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulißen D., Indicator values of plants of Central Europe [Zeigerwerte von Pflanzen Mitteleuropas], Scr. Geobot., 1992, 18, 1–248 (in German)

    Google Scholar 

  39. Zarzycki K., Trzcińska-Tacik H., Różański W., Szeląg Z. Wołek J., Korzeniak U., Ecological Indicator Values of Vascular Plants of Poland. Biodiversity of Poland 2, W. Szafer Institute of Botany, Polish Acad. Sci., Kraków, 2002

    Google Scholar 

  40. Ertsen A.C.D., Alkemade J.R.M., Wassen M.J., Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands, Plant Ecol., 1998, 135, 113–124

    Article  Google Scholar 

  41. Schaffers A.P., Sýkora K.V., Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements, J. Veg. Sci., 2000, 11, 225–244

    Article  Google Scholar 

  42. Wamelink G.W.W., Joosten V., van Dobben H.F., Berendse F., Validity of Ellenberg indicator values judged from physico-chemical field measurements, J. Veg. Sci., 2002, 13, 269–278

    Article  Google Scholar 

  43. Lawesson J.E., Fosaa A.M., Olsen E., Calibration of Ellenberg indicator values for the Faroe Islands, Appl. Veg. Sci., 2003, 6, 53–62

    Article  Google Scholar 

  44. Crosti R., de Nicola C., Fanelli G., Testi A., Ecological classification of beech woodlands in the Central Apennine through frequency distribution of Ellenberg indicators, Ann. Bot. (Roma), 2010, http://ojs.uniroma1.it/index.php/Annalidibotanica/article/view/9112/9052

    Google Scholar 

  45. Balkovič J., Kollár J., Šimonovič V., Experience with using Ellenberg’s R indicator values in Slovakia: oligotrophic and mesotrophic submontane broadleaved forests, Biologia, sec. Botany, 2012, 67, 474–482

    Article  Google Scholar 

  46. Dzwonko Z., Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator vallues, J. Appl. Ecol., 2001, 38, 942–951

    Article  CAS  Google Scholar 

  47. Sørensen R., Zinko U., Seibert J., On the calculations of the topographic wetness index evaluation of different methods based on field observation, Hydrol. Earth Syst. Sci., 2006, 10, 101–112

    Article  Google Scholar 

  48. Fitterer J.L., Nelson T.A., Coops N.C., Wulder M.A., Modelling the ecosystem indicators of British Columbia using Earth observation data and terrain indices, Ecol. Indicat., 2012, 20, 151–162

    Article  Google Scholar 

  49. Kumar L., Skidmore A.K., Knowles E., Modelling topographic variation in solar radiation in a GIS environment, Int. J. Geogr. Inf. Sci., 1997, 11, 475–497

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bożenna Czarnecka.

About this article

Cite this article

Czarnecka, B., Chabudziński, Ł. Assessment of flora diversity in a minor river valley using ecological indicator values, Geographical Information Systems and Digital Elevation Models. cent.eur.j.biol. 9, 220–231 (2014). https://doi.org/10.2478/s11535-013-0263-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0263-0

Keywords

Navigation