Skip to main content
Log in

Mediated amperometry reveals two distinct modes of yeast responses to glucose

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Mediated amperometry was exploited to monitor intracellular redox activity without cell disruption. Continuous measurements of menadione-mediated glucose currents at carbon paste electrodes with various immobilized intact wild type yeasts (Saccharomyces cerevisiae, Candida pulcherrima, Clavispora lusitaniae, Wickerhamomyces anomalus, Pichia guilliermondii, Kluyveromyces lactis var. lactis, Debaryomyces hansenii, Candida zeymolaydes and Candida tropicalis) revealed two distinct and previously unreported modes of development of the currents during the first 2 to 3 min. after subjection to glucose. A correlation among the values of the currents and the capacities of wild type yeasts to secrete various substances was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurtzman C.P., Fell J.W., Boekhout T., The Yeasts: a Taxonomic Study, 5th ed., Elsevier, Amsterdam, 2010

    Google Scholar 

  2. Zhao J., Wang Z., Fu C., Wang M., He Q., The mediated electrochemical method for rapid fermentation ability assessment, Electroanal. 2008, 20, 1587–1592

    Article  CAS  Google Scholar 

  3. Zhao J., Wang M., Yang Z., Gong Q., Lu Y., Yang Z., Mediated electrochemical measurement of the inhibitory effects of furfural and acetic acid on Saccharomyces cerevisiae and Candida shehatae, Biotechnol. Lett., 2005, 27, 207–211

    Article  PubMed  CAS  Google Scholar 

  4. Wang M., Zhao J., Yang Z., Du Z., Yang Z., Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae, Bioelectrochem., 2007, 71, 107–112

    Article  CAS  Google Scholar 

  5. Zhao J., Wang Z., Wang M., Wang H., He Q., Zhang H., The interaction mechanisms between Saccharomyces cerevisiae and menadione and its application in toxicology study, Talanta, 2008, 74, 1686–1691

    Article  PubMed  CAS  Google Scholar 

  6. Baronian K.H.R., Downard A.J., Lowen R.K., Pasco N., Detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method, Appl. Microbiol. Biotechnol., 2002, 60, 108–113

    Article  PubMed  CAS  Google Scholar 

  7. Heiskanen A., Yakovleva J., Spegel C., Taboryski R., Koudelka-Hep M., Emneus J., et al., Amperometric monitoring of redox activity in living yeast cells: comparison of menadione and menadione bisulfite as electron transfer mediators, Electrochem. Commun., 2004, 6, 219–224

    Article  CAS  Google Scholar 

  8. Spegel C.F., Heiskanen A.R., Kostesha N.V., Johanson T.H., Gorwa-Grauslund M.F., Koudelka-Hep M., et al., Amperometric response from the glycolytic versus the pentose phosphate pathway in Saccharomyces cerevisiae cells, Anal. Chem., 2007, 79, 8919–8926

    Article  PubMed  CAS  Google Scholar 

  9. Zhao J., Yang Z., Gong Q., Lu Y., Yang Z., Wang M., Electrochemical insights into the glucose metabolism pathways within Saccharomyces cerevisiae, Anal. Lett., 2005, 38, 89–98

    Article  CAS  Google Scholar 

  10. Heiskanen A., Spegel C., Kostesha N., Lindahl S., Ruzgas T., Emneus J., Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells, Anal. Biochem., 2009, 384, 11–19

    Article  PubMed  CAS  Google Scholar 

  11. Kostesha N.V, Almeida J.R.M., Heiskanen A.R., Gorwa-Grauslund M.F., Hahn-Hagerdal B., Emneus J., Electrochemical probing in vivo 5-hydoxymethyl furfural reduction in Saccharomyces cerevisiae, Anal. Chem., 2009, 81, 9896–9901

    Article  PubMed  CAS  Google Scholar 

  12. Kostesha N., Heiskanen A., Spegel C., Hahn-Hagerdal B., Gorwa-Grauslund M.F., Emneus J., Real-time detection of cofactor availability in genetically modified living Saccharomyces cerevisiae cells -Simultaneous probing of different geno- and phenotypes, Bioelectrochem., 2009, 76, 180–188

    Article  CAS  Google Scholar 

  13. Rolland F., Winderickx J., Thevelein J.M., Glucosesensing and -signalling mechanisms in yeast, FEMS Yeast Res., 2002, 2, 183–201

    PubMed  CAS  Google Scholar 

  14. Santangelo G.M, Glucose signaling in Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev., 2006, 70 253–282

    Article  PubMed  CAS  Google Scholar 

  15. Gancedo J.M., The early steps of glucose signaling in yeast, FEMS Microbiol. Rev., 2008, 32, 673–704

    Article  PubMed  CAS  Google Scholar 

  16. Busti S., Coccetti P., Alberghina L., Vanoni M., Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae, Sensors, 2010, 10, 6195–6240

    Article  PubMed  CAS  Google Scholar 

  17. Gulbiniene G., Kondratiene L, Jokantaite T., Serviene E., Melvydas V., Petkuniene G., Occurrence of killer yeast strains in fruit and berry wine yeast populations, Food Technol. Biotechnol., 2004, 42, 159–163

    CAS  Google Scholar 

  18. Melvydas V., Serviene E., Cernishova O., Petkuniene G., A novel X factor secreted by yeasts inhibits Saccharomyces cerevisiae K1, K2 and K28 killer toxins, Biologija, 2007, 53, 32–35

    CAS  Google Scholar 

  19. Melvydas V., Serviene E., Kondratiene L., Cernysova O., Diversity of Saccharomyces cerevisiae killer strains in Lithuania, Botanica Lituanica, 2009, 15, 209–215

    Google Scholar 

  20. Bab’eva I.P., Golubev V.I., Methods of yeast isolation and identification, Moscow, Pischevaya promyshlennost, 1979 (in Russian)

    Google Scholar 

  21. Leaw S.N., Chang H.C., Sun H.F., Barton R., Bouchara J.P., Chang T.C., Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions, J. Clin. Microbiol., 2006, 44, 693–699

    Article  PubMed  CAS  Google Scholar 

  22. Wang J., Analytical Electrochemistry, 2nd Edition, Wiley-WCH, 2000

    Book  Google Scholar 

  23. Castro F.A.V., Herdeiro R.S., Panek A.D., Eleutherio E.C.A., Pereira M.D., Menadione stress in Saccharomyces cerevisiae strains deficient in the glutathione transferases, Biochim. Biophys. Acta, 2008, 1770, 213–220

    Article  Google Scholar 

  24. Kim I.S., Sohn H.Y., Jin I., Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377, J. Microbiol., 2011, 49, 816–823

    Article  PubMed  CAS  Google Scholar 

  25. Kraakman L., Lemaire K., Ma P., Teunissen A.W.R.H., Donaton M.C.V., van Dijck P., et al., A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose, Mol. Microbial., 1999, 32, 1002–1012

    Article  CAS  Google Scholar 

  26. Rolland F., de Winde J.H., Lemaire K., Boles E., Thevelein J.M., Winderkx J., Glucose-induced cAMP signaling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process, Mol. Microbiol., 2000, 38, 348–358

    Article  PubMed  CAS  Google Scholar 

  27. Portela P., Moreno S., Glucose-dependent activation of protein kinase A activity in Saccharomyces cerevisiae and phosphorylation of its TPK1 catalytic subunit, Cell Signal., 2006, 18, 1072–1086

    Article  PubMed  CAS  Google Scholar 

  28. Kresnowati M.T.A. P., van Winden W.A., Almering M.J.H., ten Pierick A., Ras C., Knijnenburg T.A, et al., When transcriptome meets metabolome: fast cellular responses to sudden relief of glucose limitation, Mol. Syst. Biol., 2006, 2, 49

    Article  PubMed  CAS  Google Scholar 

  29. Sipiczki M., Metschnikovia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion, Appl. Environ. Microbiol., 2006, 72, 6716–6724

    Article  PubMed  CAS  Google Scholar 

  30. Bendova O., The killer phenomena in yeasts, Folia Microbiol., 1986, 31, 422–433

    Article  CAS  Google Scholar 

  31. Magliani, W. Conti S., Gerloni M., Bertolotti D., Polonelli L., Yeast killer systems, Clin. Microbiol. Rev., 1997, 10, 369–400

    PubMed  CAS  Google Scholar 

  32. Marquina D., Santos A., Peinado J.M., Biology of killer yeasts, Int. Microbiol., 2002, 5, 65–71

    Article  PubMed  CAS  Google Scholar 

  33. Santos A., Mauro M.S., Bravo E., Marquina D., PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Bretanomyces bruxellensis, Microbiol., 2009, 155, 624–634

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasa Garjonyte.

About this article

Cite this article

Garjonyte, R., Melvydas, V., Paškevičius, A. et al. Mediated amperometry reveals two distinct modes of yeast responses to glucose. cent.eur.j.biol. 9, 173–181 (2014). https://doi.org/10.2478/s11535-013-0257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0257-y

Keywords

Navigation