Central European Journal of Biology

, Volume 8, Issue 12, pp 1241–1249 | Cite as

LED irradiance level affects growth and nutritional quality of Brassica microgreens

  • Giedrė SamuolienėEmail author
  • Aušra Brazaitytė
  • Julė Jankauskienė
  • Akvilė Viršilė
  • Ramūnas Sirtautas
  • Algirdas Novičkovas
  • Sandra Sakalauskienė
  • Jurga Sakalauskaitė
  • Pavelas Duchovskis
Research Article


This study examines the effect of irradiance level produced by solid-state light-emitting diodes (LEDs) on the growth, nutritional quality and antioxidant properties of Brassicaceae family microgreens. Kohlrabi (Brassica oleracea var. gongylodes, ‘Delicacy Purple’) mustard (Brassica juncea L., ‘Red Lion’), red pak choi (Brassica rapa var. chinensis, ‘Rubi F1’) and tatsoi (Brassica rapa var. rosularis) were grown using peat substrate in controlled-environment chambers until harvest time (10 days, 21/17°C, 16 h). A system of five lighting modules with 455, 638, 665 and 731 nm LEDs at a total photosynthetic photon flux densities (PPFD) of 545, 440, 330, 220 and 110 µmol m−2s−1 respectively were used. Insufficient levels of photosynthetically active photon flux (110 µmol m−2 s−1) suppressed normal growth and diminished the nutritional value of the Brassica microgreens studied. In general, the most suitable conditions for growth and nutritional quality of the microgreens was 330–440 µmol m−2 s−1 irradiation, which resulted in a larger leaf surface area, lower content of nitrates and higher total anthocyanins, total phenols and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging capacity. High light levels (545 µmol m−2 s−1), which was expected to induce mild photostress, had no significant positive impact for most of investigated parameters.


Light Functional foods Antioxidants Chlorophylls Leaf area Nitrates Sucrose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Xiao Z., Lester G.E., Luo Y., Wang Q., Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens, J. Agric. Food. Chem., 2012, 60, 7644–7651PubMedCrossRefGoogle Scholar
  2. [2]
    Sharma P., Ghimeray A.K., Gurung A., Jin C.W., Rho H.S., Cho D.H., Phenolic contents, antioxidant and α-glucosidase inhibition properties of Nepalese strain buckwheat vegetables, Afr. J. Biotechnol., 2012, 11, 184–190Google Scholar
  3. [3]
    Kopsell D.A., Sams C.E., Increase in shoot tissue pigments, glucosinolates and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes, J. Amer. Soc. Hort. Sci., 2013, 138, 31–37Google Scholar
  4. [4]
    Samuolienė G., Urbonavičiūtė A., Brazaitytė A., Šabajevienė G., Sakalauskaitė J., Duchovskis P., The impact of LED illumination on antioxidant properties of sprouted seeds, Cent. Eur. J. Biol., 2011, 6, 68–74CrossRefGoogle Scholar
  5. [5]
    Samuolienė G., Sirtautas R., Brazaitytė A., Duchovskis P., LED lighting and seasonality effects antioxidant properties of baby leaf lettuce, Food Chem., 2012, 134, 1494–1499CrossRefGoogle Scholar
  6. [6]
    Johkan M., Shoji K., Goto F., Hahida S., Yoshihara T., Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce, Hort. Science, 2010, 45, 1809–1814Google Scholar
  7. [7]
    Li Q., Kubota C., Effects of supplemental light quality in growth and phytochemicals of baby leaf lettuce, Environ. Experiment. Botany, 2009, 67, 59–64CrossRefGoogle Scholar
  8. [8]
    Charron C.S., Sams C.E., Glucosinolate contents and myrosinase activity in rapid-cycling brassica olearacea grown in controlled environment, J. Amer. Soc. Hort. Sci., 2004, 129, 321–330Google Scholar
  9. [9]
    Lefsrud M.G., Kopsell D.A., Curran-Celentano J., Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment, Physiol. Plant., 2006, 127, 624–631CrossRefGoogle Scholar
  10. [10]
    Urbonavičiūtė A., Samuolienė G., Brazaitytė A., Duchovskis P., Ruzgas V., Žukauskas A., The effect of variety and lighting quality on wheatgrass antioxidant properties, Zemdirbyste, 2009, 96, 119–128Google Scholar
  11. [11]
    Stutte G.W., Edney S., Skerritt T., Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes, Hort Science, 2009, 44, 79–82Google Scholar
  12. [12]
    Ilieva I., Ivanova T., Naydenov Y., Dandolov I., Stevanov D., Plant experiments with light-emitting diode module in Svet space greenhouse, Adv. Space Res., 2010, 46, 840–845CrossRefGoogle Scholar
  13. [13]
    Anjana S.U., Iqbal M., Factors, responsible for nitrate accumulation: a review, J. Sustain. Agric., 2009, 4, 533–549CrossRefGoogle Scholar
  14. [14]
    Golan T., Müller-Moulé P., Niyogi K.K., Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants, Plant Cell Environ., 2006, 29, 879–887PubMedCrossRefGoogle Scholar
  15. [15]
    Zhou Y.H., Zhang Y.Y., Zhao X., Yu H.J., Shi K., Yu J.Q., Impact of light variation on development of photoprotection, antioxidants, and nutritional value in Lactuca sativa L., J. Agric. Food Chem., 2009, 57, 5494–5500PubMedCrossRefGoogle Scholar
  16. [16]
    Kopsell D.A., Pantanizopoulos N.I., Sams C.E., Kopsell D.E., Shoot tissue pigment levels increase in ‘Florida Broadleaf’ mustard (Brassica juncea L.) microgreens following high light treatment, Sci. Hort., 2012, 14, 96–99CrossRefGoogle Scholar
  17. [17]
    Tamulaitis G., Duchovskis P., Bliznikas Z., Breive K., Ulinskaite R., Brazaityte A. et al., Highpower light-emitting diode based facility for plant cultivation, J. Phys. D. Appl. Phys., 2005, 38, 3182–3187CrossRefGoogle Scholar
  18. [18]
    Ragaee S., Abdel-Aal E.M., Maher N., Antioxidant activity and nutrient composition of selected cereals for food use, Food Chem., 2006, 95, 32–38CrossRefGoogle Scholar
  19. [19]
    Stanciu G., Lupşor S., Sava C., Spectrophotometric characterizations of anthocyans extracted from black grapes skin, Ovidijus University Ann. Chem., 2009, 20, 205–208Google Scholar
  20. [20]
    Janghel E.K., Gupta V.K., Rai M.K., Rai J.K., Micro determination of ascorbic acid using methyl viologen, Talanta, 2007, 72, 1013–1016PubMedCrossRefGoogle Scholar
  21. [21]
    Geniatakis E., Fousaki M., Chaniotakis N.A., Direct potentiometric measurement of nitrate in seeds and produce, Comm. Soil Sci. Plant Anal., 2003, 34, 571–579CrossRefGoogle Scholar
  22. [22]
    Evans J.R., Poorter H., Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain, Plant, Cell Environ., 2001, 24, 755–767CrossRefGoogle Scholar
  23. [23]
    Fu W., Li P., Wu Y., Tang J., Effects of different light intensities on anti-oxidative enzyme activity, quality and biomass in lettuce, Hort. Sci., 2012, 39, 129–134.Google Scholar
  24. [24]
    Santamaria P., Elia A., Gonnella M., Parente A., Serio F., Ways of reducing rocket salad nitrate content, Acta Hortic., 2001, 548, 529–537Google Scholar
  25. [25]
    Araya T., Noguchi K., Terashima I., Effect of nitrogen on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L., J. Plant Res., 2010, 123, 371–379PubMedCrossRefGoogle Scholar
  26. [26]
    Walters R.G., Shephard F., Rogers J.J.M., Rolfe S.A., Horton P., Identification of mutants of Arabidopsis defective in acclimation of photosynthesis to the light environment, Plant Physiol., 2003, 131, 472–481PubMedCrossRefGoogle Scholar
  27. [27]
    Oh M.M., Rajashekar C.B., Antioxidant contents of edible sprouts: effects of environmental shocks, J. Sci. Food Agric., 2009, 89, 2221–2227CrossRefGoogle Scholar
  28. [28]
    Oh M.M., Carey E.E., Rajashekar C.B., Environmental stresses induce health — promoting phytochemicals in lettuce, Plant Physiol. Bioch., 2009, 47, 578–583CrossRefGoogle Scholar
  29. [29]
    Page M., Sultana N., Paszkiewicz K., Florance H., Smirnoff N., The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis, Plant Cell Environ., 2012, 35, 388–404PubMedCrossRefGoogle Scholar
  30. [30]
    Shao H.B., Chu L.Y., Lu Z.H., Kang C.M., Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells, Int. J. Biol. Sci., 2008, 4, 8–14CrossRefGoogle Scholar
  31. [31]
    Solfanelli C., Poggi A., Loreti E., Alpi A., Perata P., Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis, Plant Physiol., 2006, 144, 637–646CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Giedrė Samuolienė
    • 1
    Email author
  • Aušra Brazaitytė
    • 1
  • Julė Jankauskienė
    • 1
  • Akvilė Viršilė
    • 1
  • Ramūnas Sirtautas
    • 1
  • Algirdas Novičkovas
    • 2
  • Sandra Sakalauskienė
    • 1
  • Jurga Sakalauskaitė
    • 1
  • Pavelas Duchovskis
    • 1
  1. 1.Institute of HorticultureLithuanian Research Centre for Agriculture and ForestryBabtaiLithuania
  2. 2.Institute of Applied ResearchVilnius UniversityVilniusLithuania

Personalised recommendations