Skip to main content
Log in

Redox signals as a language of interorganellar communication in plant cells

  • Review Article
  • Published:
Central European Journal of Biology

Abstract

Plants are redox systems and redox-active compounds control and regulate all aspects of their life. Recent studies have shown that changes in reactive oxygen species (ROS) concentration mediated by enzymatic and non-enzymatic antioxidants are transferred into redox signals used by plants to activate various physiological responses. An overview of the main antioxidants and redox signaling in plant cells is presented. In this review, the biological effects of ROS and related redox signals are discussed in the context of acclimation to changing environmental conditions. Special attention is paid to the role of thiol/disulfide exchange via thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs) in the redox regulatory network. In plants, chloroplasts and mitochondria occupying a chloroplasts and mitochondria play key roles in cellular metabolism as well as in redox regulation and signaling. The integrated redox functions of these organelles are discussed with emphasis on the importance of the chloroplast and mitochondrion to the nucleus retrograde signaling in acclimatory and stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad P., Sarwat M., Sharma S., Reactive oxygen species, antioxidants and signaling in plants, J. Plant Biol., 2008, 51, 167–173

    Article  CAS  Google Scholar 

  2. Mittler R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, 7, 405–410

    Article  PubMed  CAS  Google Scholar 

  3. Gill S.S., Tuteja N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, 48, 909–930

    Article  PubMed  CAS  Google Scholar 

  4. Gapper C., Dolan L., Control of plant development by reactive oxygen species, Plant Physiol., 2006, 141, 341–345

    Article  PubMed  CAS  Google Scholar 

  5. Petrov V.D., Van Breusegem F., Hydrogen peroxide-a central hub for information flow in plant cells, AoB PLANTS, (in press), DOI:10.1093/aobpla/pls014

  6. Blokhina O., Fagerstedt K.V., Oxidative metabolism, ROS and NO under oxygen deprivation, Plant Physiol. Biochem., 2010, 48, 359–373

    Article  PubMed  CAS  Google Scholar 

  7. Blokhina O., Fagerstedt K.V., Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory system, Physiol. Plant., 2010, 138, 447–462

    Article  PubMed  CAS  Google Scholar 

  8. Faltin Z., Holland D., Velcheva M., Tsapovetsky M., Roeckel-Drevet P., Handa A.K., et al., Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation, Plant Cell Physiol., 2010, 51, 1151–1162

    Article  PubMed  CAS  Google Scholar 

  9. Jaleel C.A., Riadh K., Gopi R., Manivannan P., Inès J., Al-Juburi H.J., et al., Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints, Acta Physiol. Plant., 2009, 31, 427–436

    Article  Google Scholar 

  10. Foyer C.H., Noctor G., Redox homeostasis and antioxidant signaling: a metabolic interface between stress perceptions and physiological responses, Plant Cell, 2005, 17, 1866–1875

    Article  PubMed  CAS  Google Scholar 

  11. Foyer C.H., Noctor G., Ascorbate and glutathione: The heart of the redox hub, Plant Physiol., 2011, 155, 2–18

    Article  PubMed  CAS  Google Scholar 

  12. Horemans N., Foyer C.H., Potters G., Asard H., Ascorbate function and associated transport system in plants, Plant Physiol. Biochem., 2000, 38, 531–540

    Article  CAS  Google Scholar 

  13. Pogson B.J., Woo N.S., Förster B., Small I.D., Plastid signaling to the nucleus and beyond, Trends Plant Sci., 2008, 13, 602–609

    Article  PubMed  CAS  Google Scholar 

  14. Chen Z., Gallie D.R., The ascorbic acid redox state controls guard cell signaling and stomatal movement, Plant Cell, 2004, 16, 1143–1162

    Article  PubMed  CAS  Google Scholar 

  15. Shao H.B., Chu L.Y., Shao M.A., Jaleel C.A., Mi H.M., Higher plant antioxidants and redox signaling under environmental stresses, C. R. Biol., 2008, 331, 433–441

    Article  PubMed  CAS  Google Scholar 

  16. Pavet V., Olmos E., Kiddle G., Mowla S., Kumar S., Antoniw J., et al., Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis, Plant Physiol., 2005, 139, 1291–1303

    Article  PubMed  CAS  Google Scholar 

  17. Kuźniak E., Niewiadomska E., Miszalski Z., Karpinski S., The role of chloroplasts and redox status in holistic regulation of stress responses in plants, In: Maksymiec W. (Ed.), Compartmentation of Responses to Stresses in Higher Plants, True or False, Transworld Research Network, Kerala, 2009

    Google Scholar 

  18. Havaux M., Niyogi K.K., The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism, Proc. Natl. Acad. Sci., 1999, 96, 8762–8767

    Article  PubMed  CAS  Google Scholar 

  19. Meyer A.J., The integration of glutathione homeostasis and redox signaling, J. Plant Physiol., 2008, 165, 1390–1403

    Article  PubMed  CAS  Google Scholar 

  20. Zaffagnini M., Bedhomme M., Marchand C.H., Morisse S., Trost P., Lemaire S.D., Redox regulation in photosynthetic organisms: focus on glutathionylation, Antioxid. Redox Signal., 2012, 16, 567–586

    Article  PubMed  CAS  Google Scholar 

  21. Tovar-Méndez A., Matamoros M.A., Bustos-Sanmamed P., Dietz K-J., Cejudo F.J., Rouhier N., et al., Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicas, Plant Physiol., 2011, 156, 1535–1547

    Article  PubMed  Google Scholar 

  22. Cheng N-H., AtGRX4, an Arabidopsis chloroplastic monothiol glutaredoxin, is able to suppress yeast grx5 mutant phenotypes and respond to oxidative stress, FEBS Lett., 2008, 582, 848–854

    Article  PubMed  CAS  Google Scholar 

  23. Ströher E., Millar A.H., The biological roles of glutaredoxins, Biochem. J., 2012, 446, 333–348

    Article  PubMed  Google Scholar 

  24. Rouhier N., Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly, New Phytol., 2010, 186, 365–372

    Article  PubMed  CAS  Google Scholar 

  25. Leferink N.G.H., van Duijn E., Barendregt A., Heck A.J.R., van Berkel W.J.H., Galactonolactone dehydrogenase requires a redox-sensitive thiol for optimal production of vitamin C, Plant Physiol., 2009, 150, 596–605

    Article  PubMed  CAS  Google Scholar 

  26. Iversen R., Andersen P.A., Jensen K.S., Winther J.R., Sigurskjold B.W., Thiol-disulfide exchange between glutaredoxin and glutathione, Biochemistry, 2010, 49, 810–820

    Article  PubMed  CAS  Google Scholar 

  27. Tripathi B.N., Bhatt I., Dietz K-J., Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms, Protoplasma, 2009, 235, 3–15

    Article  PubMed  CAS  Google Scholar 

  28. Dietz K.-J., Peroxiredoxins in plants and cyanobacteria, Antioxid. Redox Signal., 2011, 15, 1130–1159

    Article  Google Scholar 

  29. Foyer C.H., Noctor G., Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria, Plant Physiol., 2003, 119, 355–364

    Article  CAS  Google Scholar 

  30. Munné-Bosch S., Queval G., Foyer C.H., The impact of global change factors on redox signaling underpinning stress tolerance, Plant Physiol., 2013, 161, 15–19

    Article  Google Scholar 

  31. De Gara L., Locato V., Dipierro S., de Pinto M.C., Redox homeostasis in plants. The challenge of living with endogenous oxygen production, Resp. Physiol. Neurobiol., 2010, 173, 13–19

    Article  Google Scholar 

  32. Kornas A., Kuźniak E., Ślesak I., Miszalski Z., The key role of the redox status in regulation of metabolism in photosynthesizing organisms, Acta Biochim. Pol., 2010, 57, 143–151

    PubMed  CAS  Google Scholar 

  33. Møller I.M., Sweetlove L.J., ROS signaling — specificity is required, Trends Plant Sci., 2010, 15, 370–374

    Article  PubMed  Google Scholar 

  34. Pfannschmidt T., Allen J.F., Oelmüller R., Principles of redox control in photosynthesis gene expression, Physiol. Plant., 2001, 112, 1–9

    Article  CAS  Google Scholar 

  35. Foyer C.H., Noctor G., Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications, Antioxid. Redox Signal., 2009, 11, 861–905

    Article  PubMed  CAS  Google Scholar 

  36. Shao H.-B., Chu L.-Y., Lu Z.-H., Kang C.-M., Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells, Int. J. Biol. Sci., 2008, 4, 8–14

    Article  CAS  Google Scholar 

  37. Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., et al., ROS signaling: the new wave?, Trends Plant Sci., 2011, 16, 300–309

    Article  PubMed  CAS  Google Scholar 

  38. Rochaix J.-D., Lemeille S., Shapiguzov A., Samol I., Fucile G., Willig A., et al., Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment, Phil. Trans. R. Soc. B, 2012, 367, 3466–3474

    Article  PubMed  CAS  Google Scholar 

  39. Wilson K.E., Ivanov A.G., Öquist G., Grodzinski B., Sarhan F., Huner N.P.A., Energy balance, organellar redox status, and acclimation to environmental stress, Can. J. Bot., 2006, 84, 1355–1370

    Article  CAS  Google Scholar 

  40. Lemaire S.D., Michelet L., Zaffagnini M., Massot V., Issakidis-Bourguet E., Thioredoxins in chloroplasts, Curr. Genet., 2007, 51, 343–365

    Article  PubMed  CAS  Google Scholar 

  41. Meyer Y., Reichheld J.P., Vignols F., Thioredoxins in Arabidopsis and other plants, Photosynth. Res., 2005, 86, 419–433

    Article  PubMed  CAS  Google Scholar 

  42. Kim S.G., Chi Y.H., Lee J.-S., Schlesinger S.R., Zabet-Moghaddam M., Chung J.-S., et al., Redox properties of a thioredoxin-like Arabidopsis protein, AtTDX, Biochim. Biophys. Acta, 2010, 1804, 2213–2221

    Article  CAS  Google Scholar 

  43. Arsova B., Hoja U., Wimmelbacher M., Greiner E., Üstün Ş., Melzer M., et al., Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana, Plant Cell, 2010, 22, 1498–1515

    Article  PubMed  CAS  Google Scholar 

  44. Bräutigam K., Dietzel L., Pfannschmidt T., Hypothesis: a binary redox control mode as universal regulator of photosynthetic light acclimation, Plant Signal. Behav., 2010, 5, 81–85

    Article  PubMed  Google Scholar 

  45. Millar A.H., Mittova V., Kiddle G., Heazlewood J.L., Bartoli C.G., Theodoulou F.L., et al., Control of ascorbate synthesis by respiration and its implications for stress responses, Plan Physiol., 2003, 133, 443–447

    Article  CAS  Google Scholar 

  46. Dutilleul C., Garmier M., Noctor G., Mathieu C., Chétrit P., Foyer C.H., et al., Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation, Plant Cell, 2003, 15, 1212–1226

    CAS  Google Scholar 

  47. Nunes-Nesi A., Sulpice R., Gibon Y., Fernie A.R., The enigmatic contribution of mitochondrial function in photosynthesis, J. Exp. Bot., 2008, 59, 1675–1684

    Article  PubMed  CAS  Google Scholar 

  48. Gardeström P., Interactions between mitochondria and chloroplasts, Biochim. Biophys. Acta, 1996, 1275, 38–40

    Article  Google Scholar 

  49. Raghavendra A.S., Padmasree K., Beneficial interactions of mitochondrial metabolism with photosynthesis carbon assimilation, Trends Plant Sci., 2003, 8, 546–553

    Article  PubMed  CAS  Google Scholar 

  50. Noctor G., De Paepe R., Foyer C.H., Mitochondrial redox biology and homeostasis in plants, Trends Plant Sci., 2007, 12, 125–134

    Article  PubMed  CAS  Google Scholar 

  51. Pesaresi P., Schneider A., Kleine T., Leister D., Interorganellar communication, Curr. Opin. Plant Biol., 2007, 10, 600–606

    Article  PubMed  CAS  Google Scholar 

  52. Smirnoff N., Wheeler G.L., Ascorbic acid in plants: biosynthesis and function, Crit. Rev. Plant. Sci., 2000, 19, 267–290

    Article  CAS  Google Scholar 

  53. Mullineaux P.M., ROS in retrograde signalling from the chloroplast to the nucleus, In: del Río L.A., Puppo A. (Eds.), Reactive Oxygen Species in Plant Signaling, Signaling and Communication in Plants, Springer-Verlag, Berlin Heidelberg, 2009

    Google Scholar 

  54. Pfannschmidt T., Chloroplast redox signals: how photosynthesis controls its own genes, Trends Plant Sci., 2003, 8, 33–41

    Article  PubMed  CAS  Google Scholar 

  55. Rhoads D.M., Subbaiah C.C., Mitochondrial retrograde regulation in plants, Mitochondrion, 2007, 7, 177–194

    Article  PubMed  CAS  Google Scholar 

  56. Estavillo G.M., Crisp P.A., Pornsiriwong W., Wirtz M., Collinge D., Carrie C., et al., Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis, Plant Cell, 2011, 23, 3992–4012

    Article  PubMed  CAS  Google Scholar 

  57. Gadjev I., Stone J.M., Gechev T.S., Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide, Int. Rev. Cell. Mol. Biol., 2008, 270, 87–144

    Article  PubMed  CAS  Google Scholar 

  58. Fernández A., Strand Å., Retrograde signaling and plant stress: plastid signals initiate cellular stress responses, Curr. Opin. Plant Biol., 2008, 11, 509–513

    Article  PubMed  Google Scholar 

  59. Desikan R., Clarke A., Hancock J.T., Neill J., H2O2 activates a MAP kinase-like enzyme in Arabidopsis thaliana suspension cultures, J. Exp. Bot., 1999, 50, 1863–1866

    CAS  Google Scholar 

  60. Desikan R., Mackerness S.A.H., Hancock J.T., Neill S.J., Regulation of the Arabidopsis transcriptome by oxidative stress, Plant Physiol., 2001, 127, 159–172

    Article  PubMed  CAS  Google Scholar 

  61. Gadjev I., Vanderauwera S., Gechev T.S., Laloi C., Minkov I.N., Shulaev V., et al., Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis, Plant Physiol., 2006, 141, 436–445

    Article  PubMed  CAS  Google Scholar 

  62. Jarvis P., Intracellular signaling: Chloroplast backchat, Curr. Biol., 2007, 17, 552–555

    Article  Google Scholar 

  63. Rodermel S., Pathways of plastid-to-nucleus signaling, Trends Plant Sci., 2011, 6, 471–478

    Article  Google Scholar 

  64. Nott A., Jung H.-S., Koussevitzky S., Chory J., Plastid-to-nucleus retrograde signaling, Annu. Rev. Plant Biol., 2006, 57, 739–759

    Article  PubMed  CAS  Google Scholar 

  65. Stenbaek A., Jensen P.E., Redox regulation of chlorophyll biosynthesis, Phytochemistry, 2010, 71, 853–859

    Article  PubMed  CAS  Google Scholar 

  66. Jung H.-S., Chory J., Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway?, Plant Physiol., 2010, 152, 453–459

    Article  PubMed  CAS  Google Scholar 

  67. Koussevitzky S., Nott A., Mockler T.C., Hong F., Sachetto-Martins G., Surpin M., et al., Signals from chloroplasts converge to regulate nuclear gene expression, Science, 2007, 316, 715–719

    Article  PubMed  CAS  Google Scholar 

  68. Moulin M., McCormac A.C., Terry M.J., Smith A.G., Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation, Proc. Natl. Acad. Sci. USA, 2008, 105, 15178–15183

    Article  PubMed  CAS  Google Scholar 

  69. Potters G., Horemans N., Jansen M.A.K., The cellular redox state in plant stress biology — A charging concept, Plant Physiol. Biochem., 2010, 48, 292–300

    Article  PubMed  CAS  Google Scholar 

  70. Oelze M-L., Kandlbinder A., Dietz K.-J., Redox regulation and overreduction control in the photosynthesizing cell: Complexity in redox regulatory networks, Biochim. Biophys. Acta, 2008, 1780, 1261–1272

    Article  PubMed  CAS  Google Scholar 

  71. Allen J.F., Photosynthesis: The processing of redox signals in chloroplasts, Curr. Biol., 2005, 15, 929–932

    Article  Google Scholar 

  72. Woodson J.D., Chory J., Organelle signaling: how stressed chloroplasts communicate with the nucleus, Curr. Biol., 2012, 22, 690–692

    Article  Google Scholar 

  73. Van Aken O., Whelan J., Comparison of transcriptional changes to chloroplast and mitochondrial perturbations reveals common and specific responses in Arabidopsis, Front. Plant Sci., 2012, 3, 281

    PubMed  Google Scholar 

  74. Xiao Y., Savchenko T., Baidoo E.E., Chehab W.E., Hayden D.M., Tolstikov V., et al., Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes, Cell, 2012, 149, 1525–1535

    Article  PubMed  CAS  Google Scholar 

  75. Xiao Y., Nyland R.L., Meyers C.L.F., Liu P., Methylerythritol cyclodiphosphate (MEcPP) in deoxyxylulose phosphate pathway: synthesis from an epoxide and mechanisms, Chem. Commun., 2010, 46, 7220–7222

    Article  CAS  Google Scholar 

  76. Schwarzländer M., König A-C., Sweetlove L.J., Finkemeier I., The impact of impaired mitochondrial function on retrograde signalling: a meta-analysis of transcriptomic responses, J. Exp. Bot., 2012, 63, 1735–1750

    Article  PubMed  Google Scholar 

  77. Giraud E., van Aken O., Ho L.H.M., Whelan J., The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of ALTERNATIVE OXIDASE1a, Plant Physiol., 2009, 150, 1286–1296

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Kuźniak.

About this article

Cite this article

Kopczewski, T., Kuźniak, E. Redox signals as a language of interorganellar communication in plant cells. cent.eur.j.biol. 8, 1153–1163 (2013). https://doi.org/10.2478/s11535-013-0243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0243-4

Keywords

Navigation