Skip to main content
Log in

Short term exposure of Lemna minor and Lemna gibba to mercury, cadmium and chromium

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The effects of mercury (Hg), cadmium (Cd) and chromium (Cr) in concentrations ranging from 0.02 to 20 mg L−1 applied for 24 h were assessed in Lemna minor and Lemna gibba by measuring changes in protein concentration, ascorbic acid, phenolics, malondialdehyde (MDA), hydrogen peroxide (H2O2), the activity of guaiacol peroxidase (G-POX) and catalase (CAT). Ascorbic acid, phenolics, catalase and guaiacol peroxidase played a key role in the antioxidative response of L. gibba. Inadequate activity of antioxidant enzymes in the L. minor resulted in MDA and H2O2 accumulation. In both used species, Hg treatment decreased protein content and increased CAT and G-POX activity, but decreased MDA and H2O2 levels. Cadmium and chromium had opposite impacts on two used Lemna species on almost all observed parameters. Enhanced antioxidative responses of L. gibba to lower concentrations of Hg, Cd and Cr indicated greater abiotic stress tolerance than L. minor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dietz K.-J., Krämer U., Baier M., Free radicals and reactive oxygen species as madiators of heavy metal toxicity in plants, In: Prasad M.N.V., Hagemeyer J. (Eds.), Heavy metal stress in plants: From molecules to ecosystems, Springer, Berlin, 1999

    Google Scholar 

  2. Apel K., Hirt H., Reactive oxygen species: metabolism, oxidative stress and signal transduction, Annu. Rev. Plant Biol., 2004, 55, 373–399

    Article  PubMed  CAS  Google Scholar 

  3. Khan N.A., Singh S., Abiotic stress and plant responses, IK International, New Delhi, 2008

    Google Scholar 

  4. Wang B., Peng L., Zhu L., Ren P., Protective effect of total flavonoids from Spirodela polyrrhiza (L.) Schleid on human umbilical vein endothelial cell damage induced by hydrogen peroxide, Colloids Surf. B: Biointerfaces, 2007, 60, 36–40

    Article  PubMed  CAS  Google Scholar 

  5. Michalak A., Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress, Polish J. Environ. Stud., 2006, 115, 523–530

    Google Scholar 

  6. Saqrane S., El Ggazali I., Ouahid Y., El Hassni M., El Haframi I., Bouarab L., et al., Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: Microcystin accumulation, detoxication and oxidative stress induction, Aquatic Toxicol., 2007, 83, 284–294

    Article  CAS  Google Scholar 

  7. Israr M., Sahi S., Datta R., Sarkar D., Bioaccumulation and physiological effects of mercury in Sesbania drummondii, Chemosphere, 2006, 65, 591–598

    Article  PubMed  CAS  Google Scholar 

  8. Ortega-Villasante C., Rallán-Álvarez R., Del Campo F.F., Carpena-Ruiz R.O., Cellular damage induced by cadmium and mercury in Medicago sativa, J. Exp. Bot., 2005, 56, 2239–2251

    Article  PubMed  CAS  Google Scholar 

  9. Sparks D.L., Toxic metals in the environment: the role of surfaces, Elements, 2005, 1, 193–197

    Article  CAS  Google Scholar 

  10. Mendelssohn I.A., McKee K.L., Kong T., A comparison of physiological indicators of sublethal cadmium stress in wetland plants, Environ. Exp. Bot., 2001, 46, 263–275

    Article  CAS  Google Scholar 

  11. Schützendübel A., Polle A., Plant response to abiotic stressors: heavy metal-induced oxidative stress and protection by mycorrhization, J. Exp. Bot., 2002, 53, 1351–1365

    Article  PubMed  Google Scholar 

  12. Tkalec M., Prebeg T., Roje V., Pevalek-Kozlina B., Ljubešić N., Cadmium-induced responses in duckweed Lemna minor L., Acta Physiol. Plant, 2008, 30, 881–890

    Article  CAS  Google Scholar 

  13. Cobbett S.C., Phytochelatins and their roles in heavy metal detoxification, Plant Physiol., 2000, 123, 825–832

    Article  PubMed  CAS  Google Scholar 

  14. Salnikow K., Zhitkovich A., Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic and chromium, Chem. Res. Toxicol., 2008, 21, 28–44

    Article  PubMed  Google Scholar 

  15. Sinha S., Saxena R., Singh S., Chromium induced lipid peroxidation in plants of Pistia stratiotes L: role of antioxidants and antioxidant enzymes, Chemosphere, 2005, 58, 595–604

    Article  PubMed  CAS  Google Scholar 

  16. Zell- und stoffwechselphysiologiche Untersuchungen an der Wurzel von Lemna minor unter besonderer Berücksichtigung von Kalliumund Calciummangel. Planta, 1950, 38, 431–473

  17. Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248–254

    Article  PubMed  CAS  Google Scholar 

  18. Siegel B.Z., Galston A.W., The isoperoxidases of Pisum sativum, Plant Physiol., 1967, 42, 221–226

    Article  PubMed  CAS  Google Scholar 

  19. Aebi H., Catalase in vitro, Methods Enzymol., 1984, 105, 121–126

    Article  PubMed  CAS  Google Scholar 

  20. Mukherjee S.P., Choudhuri M.A., Implications of water stress-induced changes in the level of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings, Physiol. Plantarum, 1983, 58, 166–170

    Article  CAS  Google Scholar 

  21. Varma S., Dubey R.S., Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants, Plant Sci., 2003, 164, 645–655

    Article  Google Scholar 

  22. Liang Y., Lu J., Zhang L., Wu S., Wu Y., Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions, Food Chem., 2003, 80, 286–290

    Article  Google Scholar 

  23. Sharma S.S., Dietz K.J., The relationship between metal toxicity and cellular redox imbalance, Trends Plant Sci., 2009, 14, 43–50

    Article  PubMed  CAS  Google Scholar 

  24. Panda S.K., Impact of copper on reactive oxygen species, lipid peroxidation and antioxidans in Lemna minor, Biol. Plant., 2008, 52, 561–564

    Article  CAS  Google Scholar 

  25. Razinger J., Dermastia M., Drinovec L., Drobne D., Zrimec A., Dolenec Koce J., Antioxidative responses of duckweed (Lemna minor L.) to shortterm copper exposure, Environ. Sci. Pollut. Res. Int., 2007, 14, 194–201

    Article  PubMed  CAS  Google Scholar 

  26. Razinger J., Dermastia M., Dolenc Koce J., Zrimec A., Oxidative stress in duckweed (Lemna minor L.) caused by short term cadmium exposure, Environ. Pollut., 2008, 153, 687–694

    Article  PubMed  CAS  Google Scholar 

  27. Gupta M., Chandra P., Bioaccumulation and toxicity in rooted-submerged macrophyte Vallisneria spiralis, Environ. Pollut., 1998, 103, 327–332

    Article  CAS  Google Scholar 

  28. John R., Ahmad P., Gadgil K., Sharma S., Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L., Plant. Soil Environ., 2008, 54, 262–270

    CAS  Google Scholar 

  29. Sinha S., Gupta M., Chandra P., Bioaccumulation and biochemical effects of mercury in the plant Bacopa monneri L., Environ. Toxicol. Water Qual., 1996, 11, 105–112

    Article  CAS  Google Scholar 

  30. Palma J.M., Sandalio L.M., Corpas F.J., Romero-Puertas M.C., McCarthy I., del Rio L.A., Plant proteases, protein degradation and oxidative stress: role of peroxisomes, Plant. Physiol. Biochem., 2002, 40, 521–530

    Article  CAS  Google Scholar 

  31. Gardea-Torresdey J.L., Peralta-Videa J.R., Montes M., de la Rosa G., Corral-Diaz B., Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements, Biores. Technol., 2004, 92, 229–235

    Article  CAS  Google Scholar 

  32. Hou W., Chen X., Song G., Wang Q., Chang C.C., Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor), Plant Physiol. Biochem., 2007, 45, 62–69

    Article  PubMed  CAS  Google Scholar 

  33. Sun W., Van Montagu M., Verbruggen N., Small heat shock proteins and stress tolerance in plants, Biochim. Phys. Acta, 2002, 1577, 1–9

    Article  CAS  Google Scholar 

  34. Hall J.L., Cellular mechanisms for heavy metal detoxification and tolerance, J. Exp. Bot., 2002, 53, 1–11

    Article  PubMed  CAS  Google Scholar 

  35. Prado C., Rosa M., Pagano E., Hilal M., Prado F.E., Seasonal variability of physiological and biochemical aspects of chromium accumulation in outdoor-grown Salvinia minima, Chemosphere, 2010, 81, 584–593

    Article  PubMed  CAS  Google Scholar 

  36. Vajpayee P., Tripathi R.D., Rai U.N., Ali M.B., Singh S.N., Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L., Chemosphere, 2000, 41, 1075–1082

    Article  PubMed  CAS  Google Scholar 

  37. Bhattacharjee S., Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant, Curr. Sci., 2005, 89, 1113–1121

    CAS  Google Scholar 

  38. Foyer C.H., Noctor G., Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context, Plant Cell Environ., 2005, 28, 1056–1071

    Article  CAS  Google Scholar 

  39. Uruç Parlak K., Demirezen Yilmaz D., Response of antioxidant defence to Zn stress in three duckweed species, Ecotoxicol. Environ. Saf., 2012, 85, 52–58

    Article  PubMed  Google Scholar 

  40. Subhadra A.V., Nanda A.K., Bahera P.K., Panda B.B., Acceleration of catalase and peroxidase activities in Lemna minor L. and Allium cepa L. in response to low levels of aquatic mercury, Environ. Pollut., 1991, 69, 169–179

    Article  PubMed  CAS  Google Scholar 

  41. Dhir B., Sharmila P., Pardha Saradhi P., Nasim S.A., Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater, Ecotoxicol. Environ. Saf., 2009, 72, 1790–1797

    Article  PubMed  CAS  Google Scholar 

  42. Mittler R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, 7, 405–410

    Article  PubMed  CAS  Google Scholar 

  43. Oláh V., Lakatos G., Bertók C., Kanalas P., Szőllősi E., Kis J., Short-term chromium (VI) stress induces different photosynthetic responses in two duckweed species, Lemna gibba L. and Lemna minor L., Photosynthetica, 2010, 48, 513–520

    Article  Google Scholar 

  44. Gill S.S., Tuteja N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, 48, 909–930

    Article  PubMed  CAS  Google Scholar 

  45. Babić M., Radić S., Cvjetko P., Roje V., Pevalek-Kozlina B., Pavlica M., Antioxidative responses of Lemna minor plants exposed to thallium(I)-acetate, Aquat. Bot., 2009, 91, 166–172

    Article  Google Scholar 

  46. Asada K., Takahashi M., Production and scavenging of active oxygen in photosynthesis, In: Kyle D.J., Osmond C.B., Arntzen C.J. (Eds.), Photoinhibition, Elsevier, Amsterdam, 1987

    Google Scholar 

  47. Dai L.P., Xiong Z.T., Huang Y., Li M.J., Cadmium-induced changes in pigments, total phenolics and phenylalanine ammonia-lyase activity in fronds of Azolla imbricate, Environ. Toxicol., 2006, 21, 505–512

    Article  PubMed  CAS  Google Scholar 

  48. Forni C., Braglia R., Harren F.J.M., Cristescu S.M., Stress responses of duckweed (Lemna minor L) and water velvet (Azolla filiculoides Lam.) to anionic surfactant sodium-dodecyl-sulphate (SDS), Aquatic Toxicol., 2012, 110–111, 107–113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janja Horvatić.

About this article

Cite this article

Varga, M., Horvatić, J. & Čelić, A. Short term exposure of Lemna minor and Lemna gibba to mercury, cadmium and chromium. cent.eur.j.biol. 8, 1083–1093 (2013). https://doi.org/10.2478/s11535-013-0238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0238-1

Keywords

Navigation