Central European Journal of Biology

, Volume 8, Issue 10, pp 1048–1061 | Cite as

Molecular diversity of small balsam populations in relation to site characteristics

  • Eugenija Kupcinskiene
  • Lina ZybartaiteEmail author
  • Rasa Janulioniene
  • Judita Zukauskiene
  • Algimantas Paulauskas
Research Article


Climatic shifts within recent decades created favorable conditions for invasive species flourishing in more Northern parts of Europe. Our study was aimed at evaluation of genetic variability and habitat features of Impatiens parviflora populations growing in Lithuania. Twenty one populations were selected and analysed using simple sequence repeat (SSR) and randomly amplified polymorphic DNA (RAPD) assays. Evaluated by SSRs, 315 individuals were all monomorphic and homozygous at 4 loci and heterozygous at 1 locus. RAPD analyses revealed that the percentage of polymorphic DNA loci (% P) per population ranged from 7 to 39% and genetic differentiation between populations was ΦPT=0.790 (P<0.01). Genetic distances among populations (0.135–0.426) correlated significantly with geographical distances (r=0.183; P<0.008). Populations in overmoistured soil contained higher % P (28.3) when compared to drier soil (18.7; P<0.05). All recorded populations were close to roads; their % P did not depend on proximity to buildings, light intensity or population size. Our RAPD analyses indicate multiple introductions of this species in Lithuania. Analyses of I. parviflora at SSR and RAPD loci show that the invasion process is reflected in genetic structure.


Impatiens parviflora Balsaminaceae Microsatellites Invasion Invasive species IAP IAS NIS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Morgan R.J., Impatiens: the vibrant world of busy lizzies, balsams, and touch-me-nots, Portland, USA, 2007Google Scholar
  2. [2]
    Hegi G., Illustrated flora of Central Europe [Illustrierte Flora von Mittel-Europa], Lehmans, Freising-Munich, 1925, 5, 310–320; 6, 701–704 (in German)Google Scholar
  3. [3]
    Perrins J., Fitter A., Williamson M., Population biology and rates of invasion of three introduced Impatiens species in the British Isles, J. Biogeogr., 1993, 20, 33–44CrossRefGoogle Scholar
  4. [4]
    Csiszar A., Bartha D., Small balsam (Impatiens parviflora DC.), In: Botta-Dukat Z., Balogh L. (Eds.), The most important invasive plants in Hungary, Institute of Ecology and Botany, Hungarian Academy of Sciences, Vacratot, Hungary, 2008Google Scholar
  5. [5]
    Pysek P., Prach K., Invasion dynamics of Impatiens glandulifera — a century of spreading reconstructed, Biol. Conserv., 1995, 74, 4–48CrossRefGoogle Scholar
  6. [6]
    Kuusk V., Tabaka L., Jankeviciene R., Flora of the Baltic countries. Compendium of vascular plants, Eesti Loodusfoto AS, Tartu, 1996Google Scholar
  7. [7]
    Priede A., Invasive neophytes in the flora of Latvia: distribution and dynamics, PhD thesis, University of Latvia, Riga, Latvia, 2009 (in Latvian)Google Scholar
  8. [8]
    Schmitz U., Derics G., Spread of alien invasive Impatiens balfourii in Europe and its temperature, light and soil moisture demands, Flora, 2010, 205, 772–776CrossRefGoogle Scholar
  9. [9]
    Wisnewski P., Several unregistered native and alien rare plant species in Vilnius [Nienotowane stanowiska kilku rzadszych krajowych i zawleczonych roslin w Wilenszczyznie], Acta Soc. Bot. Pol., 1934, 11 (in Polish)Google Scholar
  10. [10]
    Muhlenbach V., Botanical observations on the goods of train station in the Riga railway junction [Botanische Beobachtungen auf den Güterbahnhofen der Rigaer Eisenbahnknotenpunktes], J of Nat Assoc Riga, 1934, 61, 81–82 (in German)Google Scholar
  11. [11]
    Priede A., Distribution of some invasive alien plant species in riparian habitats in Latvia, Bot. Lithuan., 2008, 14, 137–150Google Scholar
  12. [12]
    Chmura D., Sierka E., Orczewska A., Autecology of Impatiens parviflora in natural forest stands, Rocz. AR Pozn. 386, Bot.-Stec., 2007, 11, 17–21Google Scholar
  13. [13]
    Natkevicaite-Ivanauskiene M., Adventive flora of Lithuanian Soviet Republic, Proc. Inst. Biol., 1951, 1, 77–124 (in Lithuanian)Google Scholar
  14. [14]
    Gudzinskas Z., Conspectus of alien plant species of Lithuania. 8. Aceraceae, Balsaminaceae, Elaeagnaceae, Geraniaceae, Hippocastanaceae, Linaceae, Lythraceae, Onagraceae, Oxalidaceae, Rutaceae, and Vitaceae, Bot. Lithuan., 1998, 4, 363–377Google Scholar
  15. [15]
    Prinzing A., Durka W., Klotz S., Brandl R., Which species become aliens?, Evol Ecol Res, 2002, 4, 385–405Google Scholar
  16. [16]
    Heger T., Trepl L., Predicting biological invasions, Biol. Invasions, 2003, 5, 313–321CrossRefGoogle Scholar
  17. [17]
    Cross H.B., Lowe A.J., Gurgel C.F.D., DNA barcoding of invasive species, In: Richardson D.M. (Ed), Fifty Years of Invasion Ecology: the Legacy of Charles Elton, Wiley-Blackwell, Oxford, 2011Google Scholar
  18. [18]
    Dormontt E.E., Lowe A.J., Prentis P.J., Is rapid adaptive evolution important in successful invasions? In: Richardson D.M. (Ed.), Fifty Years of Invasion Ecology: the Legacy of Charles Elton, Wiley-Blackwell, Oxford, 2011Google Scholar
  19. [19]
    Jahodova S., Trybush S., Pysek P., Wade M., Karp A., Invasive species of Heracleum in Europe: an insight into genetic relationships and invasion history, Divers. Distrib., 2007, 13, 99–13CrossRefGoogle Scholar
  20. [20]
    Michalski S.G., Durka W., Assessment of provenance delineation by genetic differentiation patterns and estimates of gene flow in the common grassland plant Geranium pratense, Conserv. Genet., 2012, 13, 581–592CrossRefGoogle Scholar
  21. [21]
    Voss N., Eckstein R.L., Durka W., Range expansion of a selfing polyploid plant despite widespread genetic uniformity, Ann. Bot., 2012., 110, 585–593PubMedCrossRefGoogle Scholar
  22. [22]
    Edwards P.J., Frey D., Bailer H., Baltisberger M., Genetic variation in native and invasive populations of Erigeron annuus as assessed by RAPD markers, Int. J. Plant Sci., 2006, 167, 93–101CrossRefGoogle Scholar
  23. [23]
    Vysniauskiene R., Ranceliene V., Zvingila D., Patamsyte J., Genetic diversity of an invasive alien species Lupinus polyphyllus populations in Lithuania, Zemdirbyste=Agriculture, 2011, 98, 383–390Google Scholar
  24. [24]
    Patamsyte J., Cesniene T., Naugzemys D., Kleizaite V., Vaitkuniene V., Rancelis V., et al., Genetic diversity of warty cabbage (Bunias orientalis L.) revealed by RAPD and ISSR markers, Zemdirbyste=Agriculture, 2011, 98, 293–300Google Scholar
  25. [25]
    Walker N.F., Hulme P.E., Hoelzel A.R., Population genetics of an invasive riparian species, Impatiens glandulifera, Plant Ecol., 2009, 203, 243–252CrossRefGoogle Scholar
  26. [26]
    Durka W., Bossdorf O., Gautschi B., Isolation and characterization of microsatellite loci in the invasive Alliaria petiolata (Brassicaceae), Mol. Ecol., 2004, 4, 173–175CrossRefGoogle Scholar
  27. [27]
    Durka W., Bossdorf O., Prati D., Auge H., Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America, Mol. Ecol., 2005, 14, 1697–1706PubMedCrossRefGoogle Scholar
  28. [28]
    Li L.F., Chen G.Q., Yuan Y.M., Ge X.J., Development of thirteen microsatellite loci for Impatiens lateristachys (Balsaminaceae), Conserv. Genet., 2008, 9, 439–441CrossRefGoogle Scholar
  29. [29]
    Schreiter S., Ebeling S.K., Durka W., Polymorphic microsatellite markers in the invasive shrub Buddleja davidii (Scrophulariaceae), Am. J. Bot., 2011, e39–40Google Scholar
  30. [30]
    Hatcher P.E., Wilkinson M.J., Albani M.C., Hebbern C.A., Conserving marginal populations of the food plant (Impatiens noli-tangere) of an endangered moth (Eustroma reticulatum) in a changing climate, Biol. Conserv., 2004, 116, 305–317CrossRefGoogle Scholar
  31. [31]
    Provan J., Love H.M., Maggs C.A., Development of microsatellites for the invasive riparian plant Impatiens glandulifera (Himalayan balsam) using inter simple sequence repeat cloning, Mol. Ecol. Notes, 2007, 7, 451–453CrossRefGoogle Scholar
  32. [32]
    Zybartaite L., Zukauskiene J., Jodinskiene M., Janssens S.B., Paulauskas A., Kupcinskiene E., RAPD analysis of genetic diversity among Lithuanian populations of Impatiens glandulifera, Zemdirbyste=Agriculture, 2011, 98, 391–398Google Scholar
  33. [33]
    Komosinska E., Wodkiewicz M., Jarzyna I., Jarochowska E., Milanowski R., Chwedorzewska K., et al., Some attempts to detect genetic differences between populations of small balsam (Impatiens parviflora DC.), Biodivers. Res. Conserv., 2006, 3, 245–247Google Scholar
  34. [34]
    Coombe D.E., Biological flora of the British Isles, Impatiens parviflora DC, J. Ecol., 1956, 44, 701–713CrossRefGoogle Scholar
  35. [35]
    Elias P., Adaptations of understorey species to exist in temperate deciduous forests, In: Margaris N.S., Arianoustou-Farragitaki M., Oechel W.C. (Eds.), Being Alive on Land. Tasks for Vegetation Science, Dr. W. Junk Publishers, The Hague, 1984Google Scholar
  36. [36]
    Trepl L., Impatiens parviflora DC. as Agriophyte of Central Europe [Uber Impatiens parviflora DC. als Agriophyt in Mitteleuropa], In: Botanical Dissertations 73 [Dissertationes Botaniceae, Band 73], Gantner, Vaduz, 1984, (in German)Google Scholar
  37. [37]
    Pysek P., Is there a taxonomic pattern to plant invasion?, Oikos, 1998, 82, 282–294CrossRefGoogle Scholar
  38. [38]
    Chmura D., Sierka E., Relation between invasive plant and species richness of forest floor vegetation: a study of Impatiens parviflora DC, Pol. J. Ecol., 2006, 54, 417–428Google Scholar
  39. [39]
    Skalova H., Moravcova L., Pysek P., Germination dynamics and seedling frost resistance of invasive and native Impatiens species reflect local climate conditions, Persp. Plant Ecol. Evol. Syst., 2011, 13, 173–180CrossRefGoogle Scholar
  40. [40]
    Elias P., Vertical structure, biomass allocation and size inequality in an ecotonal community of an invasive annual (Impatiens parviflora DC.) on a clearing in SW Slovakia, Ecology (CSFR), 1992, 11, 299–313Google Scholar
  41. [41]
    Piskorz R., Klimko M., The influence of light and soil moisture content on variation of Impatiens parviflora DC. in oak-hornbeam in the Wielkopolska National Park (Western Poland), Pop. Biol. Rastl., 2002, 7, 90–96Google Scholar
  42. [42]
    Elias P., Biological and ecological causes of invasion of Impatiens parviflora DC. into forest communities in Central Europe, Acta Hortic Regiotect., 1999, 2, 1–3Google Scholar
  43. [43]
    Elias P., Stem fungi disease (Puccinia komarovii) on Impatiens parviflora in Slovakia: effects on population dynamics and its role in regulation of plant populations, Carinthia II, 1995, 53, 14–16Google Scholar
  44. [44]
    Chmura D., Gucwa-Przepióra E., Interactions between arbuscular mycorrhiza and the growth of the invasive alien annual Impatiens parviflora DC: A study of forest type and soil properties in nature reserves (S Poland), Appl. Soil Ecol., 2012, 62, 71–80CrossRefGoogle Scholar
  45. [45]
    Hejda M., What is the impact of Impatiens parviflora on diversity and composition of herbal layer communities of temperate forests?, PLoS ONE, 2012, 7, e39571PubMedCrossRefGoogle Scholar
  46. [46]
    Lambdon P.W., Pysek P., Basnou C., Hejda M., Arianoutsou M., Essl F., et al., Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs, Preslia, 2008, 80, 101–149Google Scholar
  47. [47]
    Honnay O., Verheyen K., Hermy M., Permeability of ancient forest edges for weedy plant species invasion, Forest Ecol. Manag., 2002, 161, 109–122CrossRefGoogle Scholar
  48. [48]
    Pauchard A., Alaback P.B., Edge type defines alien plant species invasions along Pinus contorta burned, highway and clearcut forest edges, Forest Ecol. Manag., 2006, 223, 327–335CrossRefGoogle Scholar
  49. [49]
    Excoffier L., Laval G., Schneider S., Arlequin v. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinform. Online, 2005, 1, 47–50Google Scholar
  50. [50]
    Nybom H., Bartish I.V., Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants, Perspect. Plant Ecol. Evol. Syst., 2000, 3, 93–114CrossRefGoogle Scholar
  51. [51]
    Peakall R., Smouse P., GenAlEx v. 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, 6, 288–295CrossRefGoogle Scholar
  52. [52]
    Nei M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics, 1978, 89, 83–590Google Scholar
  53. [53]
    Baker H.G., Stebbins G.L. (Eds.), The Genetics of Colonizing Species, Academic Press, New York, 1965Google Scholar
  54. [54]
    Nei M., Genetic distance between populations, Am. Nat., 1972, 106, 283–292CrossRefGoogle Scholar
  55. [55]
    Yuan Y.M., Song Y., Geuten K., Rahelivololona E., Wohlhauser S., Fischer E., et al., Phylogeny and biogeography of Balsaminaceae inferred from ITS sequence data, Taxon, 2004, 53, 391–403CrossRefGoogle Scholar
  56. [56]
    Janssens S., Geuten K., Viaene T., Yuan Y.M., Song Y., Smets E., Phylogenetic utility of the AP3/DEF K-domain and its molecular evolution in Impatiens (Balsaminaceae), Mol. Phylogenet. Evol., 2007, 43, 225–239PubMedCrossRefGoogle Scholar
  57. [57]
    Janssens S., Geuten K., Yuan Y.M., Song Y., Küpfer P., Smets E., Phylogenetics of Impatiens and Hydrocera (Balsaminaceae) using chloroplast atpB-rbcL spacer sequences, Syst. Bot., 2006, 31, 171–180CrossRefGoogle Scholar
  58. [58]
    Nei M., Maruyama T., Chakraborty R., The bottleneck effect and genetic variability in populations, Evolution, 1975, 29, 1–10CrossRefGoogle Scholar
  59. [59]
    Welsh J., McClelland M., Fingerprinting genomes using PCR with arbitrary primers, Nucleic. Acids Res., 1990, 18, 7213–7218PubMedCrossRefGoogle Scholar
  60. [60]
    Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V., DNA polymorphism amplified by arbitrary primers are useful as genetic markes, Nucleic Acids Res., 1990, 18, 6531–6535PubMedCrossRefGoogle Scholar
  61. [61]
    Barcaccia G., Arzenton F., Sharbe T.F., Varotto S., Parrini P., Lucchin M., Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L., Heredity, 2006, 96, 322–333PubMedCrossRefGoogle Scholar
  62. [62]
    Jones N., Ougham H., Thomas H., Pasakinskiene I., Tansley review. Markers and mapping revisited: finding your gene, New Phytol., 2009, 183, 935–966PubMedCrossRefGoogle Scholar
  63. [63]
    Ellenberg H., Ruprecht D., Volkmar W., Willy W., Dirk P., Indicator values of plants in Central Europe [Zeigerwerte von Pflanzen in Mitteleuropa], Scripta Geobot., 1992, 18, 1–258 (in German)Google Scholar
  64. [64]
    Grime J.P., Hodgson J.G., Hunt R., Comparative plant ecology, Castlepoint Press, London, 2007Google Scholar
  65. [65]
    Colautti R.I., Grigorovich I.A., MacIsaac H.J., Propagule pressure: a null model for biological invasions, Biol. Invasions, 2006, 8, 1023–1037CrossRefGoogle Scholar
  66. [66]
    Simberloff D., The role of propagule pressure in biological invasions, Annu. Rev. Ecol. Evol. Syst., 2009, 40, 81–102CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Eugenija Kupcinskiene
    • 1
  • Lina Zybartaite
    • 1
    Email author
  • Rasa Janulioniene
    • 1
  • Judita Zukauskiene
    • 1
  • Algimantas Paulauskas
    • 1
  1. 1.Department of Biology, Faculty of Nature SciencesVytautas Magnus UniversityKaunasLithuania

Personalised recommendations