Central European Journal of Biology

, Volume 8, Issue 10, pp 931–942 | Cite as

microRNA in the control of stem-like phenotype of cancer cells

  • Michal WozniakEmail author


Current therapies against metastatic tumors are still ineffective. Cancer stem cells — a small subset of cells inside the tumor that possesses a self-renewal capacity — might be responsible for the recurrence of the tumor after anti-cancer therapies. Their immortality and unique drug resistance impede their eradication during therapy. The ‘stemness’ of these cells is controlled by microRNAs. These molecules possess the ability to downregulate gene expression by binding to the target mRNA. It turns out that microRNAs control the expression of approximately 60% of the genes in human cells. MicroRNA aberrant expression can lead to cancer development and progression. Therefore, recent research has focused on unraveling the role of microRNA in maintaining a stem-like phenotype in malignant tumors and cancer stem cells. This review summarizes our current knowledge about microRNAs that control the self-renewal capacity of cancer stem cells and indicates the importance of profound research aimed at developing efficient miRNA-targeted therapies.


Cancer stem cells Differentiation miRNA Self-renewal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lee Y., Kim M., Han J., Yeom K.H., Lee S., Baek S.H., et al., MicroRNA genes are transcribed by RNA polymerase II, EMBO J., 2004, 23, 4051–4060PubMedCrossRefGoogle Scholar
  2. [2]
    Cai X., Hagedorn C.H., Cullen B.R., Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs, RNA, 2004, 10, 1957–1966PubMedCrossRefGoogle Scholar
  3. [3]
    Borchert G.M., Lanier W., Davidson B.L., RNA polymerase III transcribes human microRNAs, Nat. Struct. Mol. Biol., 2006, 13, 1097–10101PubMedCrossRefGoogle Scholar
  4. [4]
    Gregory R.I., Yan K.P., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., et al., The Microprocessor complex mediates the genesis of microRNAs, Nature, 2004, 432, 235–240PubMedCrossRefGoogle Scholar
  5. [5]
    Yi R., Qin Y., Macara I.G., Cullen B.R., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs, Genes Dev., 2003, 17, 3011–3016PubMedCrossRefGoogle Scholar
  6. [6]
    Denli A.M., Tops B.B., Plasterk R.H., Ketting R.F., Hannon G.J., Processing of primary microRNAs by the Microprocessor complex, Nature, 2004, 432, 231–235PubMedCrossRefGoogle Scholar
  7. [7]
    Jagadeeswaran G., Zheng Y., Sumathipala N., Jiang H., Arrese E.L., Soulages J.L., et al., Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development, BMC Genomics, 2010, 11, 52PubMedCrossRefGoogle Scholar
  8. [8]
    Zhang L., Ding L., Cheung T.H., Dong M.Q., Chen J., Sewell A.K., et al., Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2, Mol. Cell, 2007, 28, 598–613PubMedCrossRefGoogle Scholar
  9. [9]
    Babiarz J.E., Ruby J.G., Wang Y., Bartel D.P., Blelloch R., Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs, Genes Dev., 2008, 22, 2773–2785PubMedCrossRefGoogle Scholar
  10. [10]
    Berezikov E., Liu N., Flynt A.S., Hodges E., Rooks M., Hannon G.J., et al., Evolutionary flux of canonical microRNAs and mirtrons in Drosophila, Nat. Genet., 2010, 42, 6–9PubMedCrossRefGoogle Scholar
  11. [11]
    Rodriguez A., Griffiths-Jones S., Ashurst J.L., Bradley A., Identification of mammalian microRNA host genes and transcription units, Genome Res., 2004, 14, 1902–1910PubMedCrossRefGoogle Scholar
  12. [12]
    Behm-Ansmant I., Rehwinkel J., Doerks T., Stark A., Bork P., Izaurralde E., mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes, Genes Dev., 2006, 20, 1885–1898PubMedCrossRefGoogle Scholar
  13. [13]
    Bartel D.P., MicroRNAs: target recognition and regulatory functions, Cell, 2009, 136, 215–233PubMedCrossRefGoogle Scholar
  14. [14]
    Eulalio A., Huntzinger E., Izaurralde E., Getting to the root of miRNA-mediated gene silencing, Cell, 2008, 132, 9–14PubMedCrossRefGoogle Scholar
  15. [15]
    Chekulaeva M., Filipowicz W., Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells, Curr. Opin. Cell Biol., 2009, 21, 452–460PubMedCrossRefGoogle Scholar
  16. [16]
    Ørom U.A., Nielsen F.C., Lund A.H., MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation, Mol. Cell, 2008, 30, 460–471PubMedCrossRefGoogle Scholar
  17. [17]
    Henke J.I., Goergen D., Zheng J., Song Y., Schüttler C.G., Fehr C., et al., microRNA-122 stimulates translation of hepatitis C virus RNA, EMBO J., 2008, 27, 3300–3310PubMedCrossRefGoogle Scholar
  18. [18]
    Reya T., Morrison S.J., Clarke M.F., Weissman I.L., Stem cells, cancer, and cancer stem cells, Nature, 2001, 414, 105–111PubMedCrossRefGoogle Scholar
  19. [19]
    Clarke M.F., Dick J.E., Dirks P.B., Eaves C.J., Jamieson C.H., Jones D.L., et al., Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells, Cancer Res., 2006, 66, 9339–9344PubMedCrossRefGoogle Scholar
  20. [20]
    Gupta P.B., Chaffer C.L., Weinberg R.A., Cancer stem cells: mirage or reality? Nat. Med., 2009, 15, 1010–1012PubMedCrossRefGoogle Scholar
  21. [21]
    Welte Y., Adjaye J., Lehrach H.R., Regenbrecht C.R., Cancer stem cells in solid tumors: elusive or illusive? Cell Commun. Signal., 2010, 8, 6PubMedCrossRefGoogle Scholar
  22. [22]
    Liu S., Dontu G., Wicha M.S., Mammary stem cells, self-renewal pathways, and carcinogenesis, Breast Cancer Res., 2005, 7, 86–95PubMedCrossRefGoogle Scholar
  23. [23]
    Dontu G., Jackson K.W., McNicholas E., Kawamura M.J., Abdallah W.M, Wicha M.S., Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells, Breast Cancer Res, 2004, 6, R605–R615PubMedCrossRefGoogle Scholar
  24. [24]
    Karhadkar S.S., Bova G.S., Abdallah N., Dhara S., Gardner D., Maitra A., et al., Hedgehog signalling in prostate regeneration, neoplasia and metastasis, Nature, 2004, 431, 707–712PubMedCrossRefGoogle Scholar
  25. [25]
    Olsen C.L., Hsu P.P., Glienke J., Rubanyi G.M., Brooks A.R., Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors, BMC Cancer, 2004, 4, 43PubMedCrossRefGoogle Scholar
  26. [26]
    Nam Y., Aster J.C., Blacklow S.C., Notch signaling as a therapeutic target, Curr. Opin. Chem. Biol., 2002, 6, 501–509PubMedCrossRefGoogle Scholar
  27. [27]
    Nickoloff B.J., Osborne B.A., Miele L., Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents, Oncogene, 2003, 22, 6598–6608PubMedCrossRefGoogle Scholar
  28. [28]
    Bjerkvig R., Tysnes B.B., Aboody K.S., Najbauer J., Terzis A.J., Opinion: the origin of the cancer stem cell: current controversies and new insights, Nat. Rev. Cancer, 2005, 5, 899–904PubMedCrossRefGoogle Scholar
  29. [29]
    Nowell P.C., The clonal evolution of tumor cell populations, Science, 1976, 194, 23–28PubMedCrossRefGoogle Scholar
  30. [30]
    Ailles L.E., Weissman I.L., Cancer stem cells in solid tumors, Curr. Opin. Biotechnol., 2007, 18, 460–466PubMedCrossRefGoogle Scholar
  31. [31]
    Bonnet D., Dick J.E., Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell, Nat. Med., 1997, 3, 730–737PubMedCrossRefGoogle Scholar
  32. [32]
    Lapidot T., Sirard C., Vormoor J., Murdoch B., Hoang T., Caceres-Cortes J., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice, Nature, 1994, 367, 645–648PubMedCrossRefGoogle Scholar
  33. [33]
    Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F., Prospective identification of tumorigenic breast cancer cells, Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 3983–3988PubMedCrossRefGoogle Scholar
  34. [34]
    Ponti D., Costa A., Zaffaroni N., Pratesi G., Petrangolini G., Coradini D., et al., Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties, Cancer Res., 2005, 65, 5506–5511PubMedCrossRefGoogle Scholar
  35. [35]
    Dontu G., Abdallah W.M., Foley J.M., Jackson K.W., Clarke M.F., Kawamura M.J., et al., In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells, Genes Dev., 2003, 17, 1253–1270PubMedCrossRefGoogle Scholar
  36. [36]
    O’Brien C.A., Pollett A., Gallinger S., Dick J.E., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice, Nature, 2007, 445, 106–110PubMedCrossRefGoogle Scholar
  37. [37]
    Singh S.K., Hawkins C., Clarke I.D., Squire J.A., Bayani J., Hide T., et al., Identification of human brain tumour initiating cells, Nature, 2004, 432, 396–401PubMedCrossRefGoogle Scholar
  38. [38]
    Suetsugu A., Nagaki M., Aoki H., Motohashi T., Kunisada T., Moriwaki H., Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells, Biochem. Biophys. Res. Commun., 2006, 351, 820–824PubMedCrossRefGoogle Scholar
  39. [39]
    Fang D., Nguyen T.K., Leishear K., Finko R., Kulp A.N., Hotz S., et al., A tumorigenic subpopulation with stem cell properties in melanomas, Cancer Res., 2005, 65, 9328–9337PubMedCrossRefGoogle Scholar
  40. [40]
    Richardson G.D., Robson C.N., Lang S.H., Neal D.E., Maitland N.J., Collins A.T., CD133, a novel marker for human prostatic epithelial stem cells, J. Cell Sci., 2004, 117, 3539–3545PubMedCrossRefGoogle Scholar
  41. [41]
    Maeda S., Shinchi H., Kurahara H., Mataki Y., Maemura K., Sato M., et al., CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer, Br. J. Cancer, 2008, 98, 1389–1397PubMedCrossRefGoogle Scholar
  42. [42]
    Monzani E., Facchetti F., Galmozzi E., Corsini E., Benetti A., Cavazzin C., et al., Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential, Eur. J. Cancer, 2007, 43, 935–946PubMedCrossRefGoogle Scholar
  43. [43]
    Jin L., Hope K.J., Zhai Q., Smadja-Joffe F., Dick J.E., Targeting of CD44 eradicates human acute myeloid leukemic stem cells, Nat. Med., 2006, 12, 1167–1174PubMedCrossRefGoogle Scholar
  44. [44]
    Collins A.T., Berry P.A., Hyde C., Stower M.J., Maitland N.J., Prospective identification of tumorigenic prostate cancer stem cells, Cancer Res., 2005, 65, 10946–10951PubMedCrossRefGoogle Scholar
  45. [45]
    Li C., Heidt D.G., Dalerba P., Burant C.F., Zhang L., Adsay V., et al., Identification of pancreatic cancer stem cells, Cancer Res., 2007, 67, 1030–1037PubMedCrossRefGoogle Scholar
  46. [46]
    Quintana E., Shackleton M., Foster H.R., Fullen D.R., Sabel M.S., Johnson T.M., et al., Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized, Cancer Cell., 2010, 18, 510–523PubMedCrossRefGoogle Scholar
  47. [47]
    Sztiller-Sikorska M., Koprowska K., Jakubowska J., Zalesna I., Stasiak M., Duechler M., et al., 2012. Sphere formation and self-renewal capacity of melanoma cells is affected by the microenvironment, Melanoma Res., 2010, 22, 215–224PubMedCrossRefGoogle Scholar
  48. [48]
    Pinner S., Jordan P., Sharrock K., Bazley L., Collinson L., Marais R., et al., Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination, Cancer Res., 2009, 69, 7969–7977PubMedCrossRefGoogle Scholar
  49. [49]
    Cheli Y., Giuliano S., Botton T., Rocchi S, Hofman V., Hofman P., et al., Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny, Oncogene, 2011, 30, 2307–2318PubMedCrossRefGoogle Scholar
  50. [50]
    Du J., Widlund H.R., Horstmann M.A., Ramaswamy S., Ross K., Huber W.E., et al., Critical role of CDK2 for melanoma growth linked to its melanocytespecific transcriptional regulation by MITF, Cancer Cell, 2004, 6, 565–576PubMedCrossRefGoogle Scholar
  51. [51]
    Carreira S., Goodall J., Denat L., Rodriguez M., Nuciforo P., Hoek K.S., et al., Mitf regulation of Dia1 controls melanoma proliferation and invasiveness, Genes Dev., 2006, 20, 3426–3439PubMedCrossRefGoogle Scholar
  52. [52]
    Park I.K., Qian D., Kiel M., Becker M.W., Pihalja M., Weissman I.L., et al., Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells, Nature, 2003, 423, 302–305PubMedCrossRefGoogle Scholar
  53. [53]
    Molofsky A.V., He S., Bydon M., Morrison S.J., Pardal R., Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways, Genes Dev., 2005, 19, 1432–1437PubMedCrossRefGoogle Scholar
  54. [54]
    Pietersen A.M., Evers B., Prasad A.A., Tanger E., Cornelissen-Steijger P., Jonkers J., et al., Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium, Curr. Biol., 2008, 18, 1094–1099PubMedCrossRefGoogle Scholar
  55. [55]
    Christoffersen N.R., Silahtaroglu A., Orom U.A., Kauppinen S., Lund A.H., miR-200b mediates post-transcriptional repression of ZFHX1B, RNA, 2007, 13, 1172–1178PubMedCrossRefGoogle Scholar
  56. [56]
    Gregory P.A., Bert A.G., Paterson E.L., Barry S.C., Tsykin A., Farshid G., et al., The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1, Nat. Cell Biol., 2008, 10, 593–601PubMedCrossRefGoogle Scholar
  57. [57]
    Park I.H., Zhao R., West J.A., Yabuuchi A., Huo H., Ince T.A., et al., Reprogramming of human somatic cells to pluripotency with defined factors, Nature, 2008, 451, 141–146PubMedCrossRefGoogle Scholar
  58. [58]
    Simon J.A, Kingston R.E., Mechanisms of polycomb gene silencing: knowns and unknowns, Nat. Rev. Mol. Cell Biol., 2009, 10, 697–708PubMedGoogle Scholar
  59. [59]
    Boyer L.A., Plath K., Zeitlinger J., Brambrink T., Medeiros L.A., Lee T.I., et al., Polycomb complexes repress developmental regulators in murine embryonic stem cells, Nature, 2006, 441, 349–353PubMedCrossRefGoogle Scholar
  60. [60]
    Herranz N., Pasini D., Díaz V.M., Francí C., Gutierrez A., Dave N., et al., Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor, Mol. Cell Biol., 2008, 28, 4772–4781PubMedCrossRefGoogle Scholar
  61. [61]
    Hussain M., Rao M., Humphries A.E., Hong J.A., Liu F., Yang M., et al., Tobacco smoke induces polycomb-mediated repression of Dickkopf-1 in lung cancer cells, Cancer Res., 2009, 69, 3570–3578PubMedCrossRefGoogle Scholar
  62. [62]
    Glinsky G.V., Berezovska O., Glinskii A.B., Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer, J. Clin. Invest., 2005, 115, 1503–1521PubMedCrossRefGoogle Scholar
  63. [63]
    Iliopoulos D., Lindahl-Allen M., Polytarchou C., Hirsch H.A., Tsichlis P.N., Struhl K., Loss of miR-200 inhibition of Suz12 leads to polycombmediated repression required for the formation and maintenance of cancer stem cells, Mol. Cell, 2010, 39, 761–772PubMedCrossRefGoogle Scholar
  64. [64]
    Biddle A., Liang X., Gammon L., Fazil B., Harper L.J., Emich H., et al., Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratoryor proliferative, Cancer Res., 2011 71, 5317–5326PubMedCrossRefGoogle Scholar
  65. [65]
    Brabletz T., Jung A., Spaderna S., Hlubek F., Kirchner T., Opinion: migrating cancer stem cells — an integrated concept of malignant tumour progression, Nat. Rev. Cancer, 2005, 5, 744–749PubMedCrossRefGoogle Scholar
  66. [66]
    Mani S.A., Guo W., Liao M.J., Eaton E.N., Ayyanan A., Zhou A.Y., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 2008, 133, 704–715PubMedCrossRefGoogle Scholar
  67. [67]
    Thiery J.P., Epithelial-mesenchymal transitions in development and pathologies, Curr. Opin. Cell Biol., 2003, 15, 740–746PubMedCrossRefGoogle Scholar
  68. [68]
    Wellner U., Schubert J., Burk U.C., Schmalhofer O., Zhu F., Sonntag A., et al., The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs, Nat. Cell Biol., 2009, 11, 1487–1495PubMedCrossRefGoogle Scholar
  69. [69]
    Wang X.Q., Ongkeko W.M., Chen L., Yang Z.F., Lu P., Chen K.K., et al., Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway, Hepatology, 2010, 52, 528–539PubMedCrossRefGoogle Scholar
  70. [70]
    Frank N.Y., Margaryan A., Huang Y., Schatton T., Waaga-Gasser A.M., Gasser M., et al., ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma, Cancer Res., 2005, 65, 4320–4333PubMedCrossRefGoogle Scholar
  71. [71]
    Gupta P.B., Onder T.T., Jiang G., Tao K., Kuperwasser C., Weinberg R.A., et al., Identification of selective inhibitors of cancer stem cells by high-throughput screening, Cell, 2009, 138, 645–659PubMedCrossRefGoogle Scholar
  72. [72]
    Stefani G., Slack F.J., Small non-coding RNAs in animal development, Nat. Rev. Mol. Cell Biol., 2008, 9, 219–230PubMedCrossRefGoogle Scholar
  73. [73]
    Chen J.F., Murchison E.P., Tang R., Callis T.E., Tatsuguchi M., Deng Z., Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 2111–2116PubMedCrossRefGoogle Scholar
  74. [74]
    Davis T.H., Cuellar T.L., Koch S.M., Barker A.J., Harfe B.D., McManus M.T., et al., Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus, J. Neurosci., 2008, 28, 4322–4330PubMedCrossRefGoogle Scholar
  75. [75]
    Koralov S.B., Muljo S.A., Galler G.R., Krek A., Chakraborty T., Kanellopoulou C., et al., Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage, Cell, 2008, 132, 860–874PubMedCrossRefGoogle Scholar
  76. [76]
    Wang Y., Medvid R., Melton C., Jaenisch R., Blelloch R., DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal, Nat. Genet., 2007, 39, 380–385PubMedCrossRefGoogle Scholar
  77. [77]
    Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, 2000, 403, 901–906PubMedCrossRefGoogle Scholar
  78. [78]
    Wulczyn F.G., Smirnova L., Rybak A., Brandt C., Kwidzinski E., Ninnemann O., et al., Post-transcriptional regulation of the let-7 microRNA during neural cell specification, FASEB J., 2007, 21, 415–426PubMedCrossRefGoogle Scholar
  79. [79]
    Takamizawa J., Konishi H., Yanagisawa K., Tomida S., Osada H., Endoh H., et al., Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival, Cancer Res., 2004, 64, 3753–3756PubMedCrossRefGoogle Scholar
  80. [80]
    Yu F., Yao H., Zhu P., Zhang X., Pan Q., Gong C., et al., let-7 regulates self renewal and tumorigenicity of breast cancer cells, Cell, 2007, 131, 1109–1123PubMedCrossRefGoogle Scholar
  81. [81]
    Johnson C.D., Esquela-Kerscher A., Stefani G., Byrom M., Kelnar K., Ovcharenko D., et al., The let-7 microRNA represses cell proliferation pathways in human cells, Cancer Res., 2007, 67, 7713–7722PubMedCrossRefGoogle Scholar
  82. [82]
    Shimono Y., Zabala M., Cho R.W., Lobo N., Dalerba P., Qian D., et al., Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells, Cell, 2009, 138, 592–603PubMedCrossRefGoogle Scholar
  83. [83]
    Godlewski J., Nowicki M.O., Bronisz A., Williams S., Otsuki A., Nuovo G., et al., Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal, Cancer Res., 2008, 68, 9125–9130PubMedCrossRefGoogle Scholar
  84. [84]
    Burk U., Schubert J., Wellner U., Schmalhofer O., Vincan E., Spaderna S., et al., A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells, EMBO Rep., 2008, 9, 582–589PubMedCrossRefGoogle Scholar
  85. [85]
    Xu N., Papagiannakopoulos T., Pan G., Thomson J.A., Kosik K.S., MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells, Cell, 2009, 137, 647–658PubMedCrossRefGoogle Scholar
  86. [86]
    Landgraf P., Rusu M., Sheridan R., Sewer A., Iovino N., Aravin A., et al., A mammalian microRNA expression atlas based on small RNA library sequencing, Cell, 2007, 129, 1401–1414PubMedCrossRefGoogle Scholar
  87. [87]
    Zaman M.S., Chen Y., Deng G., Shahryari V., Suh S.O., Saini S., et al., The functional significance of microRNA-145 in prostate cancer, Br. J. Cancer, 2010, 103, 256–264PubMedCrossRefGoogle Scholar
  88. [88]
    Noguchi S., Mori T., Hoshino Y., Yamada N., Nakagawa T., Sasaki N., et al., Comparative study of anti-oncogenic microRNA-145 in canine and human malignant melanoma, J. Vet. Med. Sci., 2012, 74, 1–8PubMedCrossRefGoogle Scholar
  89. [89]
    Barroso-del Jesus A., Lucena-Aguilar G., Menendez P., The miR-302-367 cluster as a potential stemness regulator in ESCs, Cell Cycle, 2009, 8, 394–398PubMedCrossRefGoogle Scholar
  90. [90]
    Card D.A., Hebbar P.B., Li L., Trotter K.W., Komatsu Y., Mishina Y., et al., Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells, Mol. Cell Biol., 2008, 28, 6426–6238PubMedCrossRefGoogle Scholar
  91. [91]
    Lin S.L., Chang D.C., Chang-Lin S., Lin C.H., Wu D.T., Chen D.T., et al., Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state, RNA, 2008, 14, 2115–2124PubMedCrossRefGoogle Scholar
  92. [92]
    Ji Q., Hao X., Zhang M., Tang W., Yang M., Li L., et al., MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells, PLoS One, 2009, 4, e6816PubMedCrossRefGoogle Scholar
  93. [93]
    Kato M., Paranjape T., Müller R.U., Nallur S., Gillespie E., Keane K., et al., The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells, Oncogene, 2009, 28, 2419–2424PubMedCrossRefGoogle Scholar
  94. [94]
    Kozaki K., Imoto I., Mogi S., Omura K., Inazawa J., Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer, Cancer Res., 2008, 68, 2094–2105PubMedCrossRefGoogle Scholar
  95. [95]
    Bommer G.T., Gerin I., Feng Y., Kaczorowski A.J., Kuick R., Love R.E., et al., p53-mediated activation of miRNA34 candidate tumor-suppressor genes, Curr. Biol., 2007, 17, 1298–1307PubMedCrossRefGoogle Scholar
  96. [96]
    Hermeking H., The miR-34 family in cancer and apoptosis, Cell Death Differ., 2010, 17, 193–199PubMedCrossRefGoogle Scholar
  97. [97]
    Liu C., Kelnar K., Liu B., Chen X., Calhoun-Davis T., Li H., et al., The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44, Nat. Med., 2011, 17, 211–215PubMedCrossRefGoogle Scholar
  98. [98]
    Furuta M., Kozaki K.I., Tanaka S., Arii S., Imoto I., Inazawa J., miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma, Carcinogenesis, 2010, 31, 766–776PubMedCrossRefGoogle Scholar
  99. [99]
    Saini S., Majid S., Yamamura S., Tabatabai L., Suh S.O., Shahryari V., et al., Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis, Clin. Cancer Res., 2011, 17, 5287–5298PubMedCrossRefGoogle Scholar
  100. [100]
    Garzia L., Andolfo I., Cusanelli E., Marino N., Petrosino G., De Martino D., et al., MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma, PLoS One, 2009, 4, e4998PubMedCrossRefGoogle Scholar
  101. [101]
    Iorio M.V., Visone R., Di Leva G., Donati V., Petrocca F., Casalini P., et al., MicroRNA signatures in human ovarian cancer, Cancer Res, 2007, 67, 8699–86707PubMedCrossRefGoogle Scholar
  102. [102]
    Murakami Y., Yasuda T., Saigo K., Urashima T., Toyoda H., Okanoue T., et al., Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues, Oncogene, 2006, 25, 2537–2545PubMedCrossRefGoogle Scholar
  103. [103]
    Zhang J., Luo N., Luo Y., Peng Z., Zhang T., Li S., microRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb, Int. J. Oncol., 2012, 40, 747–756PubMedGoogle Scholar
  104. [104]
    Chen C.Z., Li L., Lodish H.F., Bartel D.P., MicroRNAs modulate hematopoietic lineage differentiation, Science, 2004, 303, 83–86PubMedCrossRefGoogle Scholar
  105. [105]
    Ji J., Yamashita T., Budhu A., Forgues M., Jia H.L., Li C., et al., Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells, Hepatology, 2009, 50, 472–480PubMedCrossRefGoogle Scholar
  106. [106]
    Clevers H., Wnt/beta-catenin signaling in development and disease, Cell, 2006, 127, 469–480PubMedCrossRefGoogle Scholar
  107. [107]
    Wang Y, Yu Y., Tsuyada A., Ren X., Wu X., Stubblefield K., et al., Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM, Oncogene, 2011, 30, 1470–1480PubMedCrossRefGoogle Scholar
  108. [108]
    Yu Z., Wang C., Wang M., Li Z., Casimiro M.C., Liu M., et al., A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation, J. Cell Biol., 2008, 182, 509–517PubMedCrossRefGoogle Scholar
  109. [109]
    Hayashita Y., Osada H., Tatematsu Y., Yamada H., Yanagisawa K., Tomida S, et al., A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation, Cancer Res., 2005, 65, 9628–9632PubMedCrossRefGoogle Scholar
  110. [110]
    Esquela-Kerscher A., Trang P., Wiggins J.F., Patrawala L., Cheng A., Ford L., et al., The let-7 microRNA reduces tumor growth in mouse models of lung cancer, Cell Cycle, 2008, 7, 759–764PubMedCrossRefGoogle Scholar
  111. [111]
    Trang P., Medina P.P., Wiggins J.F., Ruffino L., Kelnar K., Omotola M., et al., Regression of murine lung tumors by the let-7 microRNA, Oncogene, 2010, 29, 1580–1587PubMedCrossRefGoogle Scholar
  112. [112]
    Kota J., Chivukula R.R., O’Donnell K.A., Wentzel E.A., Montgomery C.L., Hwang H.W., et al., Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model, Cell, 2009, 137, 1005–1017PubMedCrossRefGoogle Scholar
  113. [113]
    Kumar M.S., Erkeland S.J., Pester R.E., Chen C.Y., Ebert M.S., Sharp P.A., et al., Suppression of non-small cell lung tumor development by the let-7 microRNA family, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 3903–3908PubMedCrossRefGoogle Scholar
  114. [114]
    Ji Q., Hao X., Meng Y., Zhang M., Desano J., Fan D., et al., Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres, BMC Cancer, 2008, 8, 266PubMedCrossRefGoogle Scholar
  115. [115]
    Krützfeldt J., Rajewsky N., Braich R., Rajeev K.G., Tuschl T., Manoharan M., et al., Silencing of microRNAs in vivo with ‘antagomirs’, Nature, 2005, 438, 685–689PubMedCrossRefGoogle Scholar
  116. [116]
    Gabriely G., Wurdinger T., Kesari S., Esau C.C., Burchard J., Linsley P.S., et al., MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators, Mol. Cell Biol., 2008, 28, 5369–5380PubMedCrossRefGoogle Scholar
  117. [117]
    Anand S., Majeti B.K., Acevedo L.M., Murphy E.A., Mukthavaram R., Scheppke L., et al., MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis, Nat. Med., 2010, 16, 909–914PubMedCrossRefGoogle Scholar
  118. [118]
    Zheng G., Ambros V., Li W.H., Inhibiting miRNA in Caenorhabditis elegans using a potent and selective antisense reagent, Silence, 2010, 1, 9PubMedCrossRefGoogle Scholar
  119. [119]
    Krützfeldt J., Kuwajima S., Braich R., Rajeev K.G., Pena J., Tuschl T., et al., Specificity, duplex degradation and subcellular localization of antagomirs, Nucleic Acids Res., 2007, 35, 2885–2892PubMedCrossRefGoogle Scholar
  120. [120]
    Owczarzy R., You Y., Groth C.L., Tataurov A.V., Stability and mismatch discrimination of locked nucleic acid-DNA duplexes, Biochemistry, 2011, 50, 9352–9367PubMedCrossRefGoogle Scholar
  121. [121]
    Oh Y.K., Park T.G., siRNA delivery systems for cancer treatment, Adv. Drug Deliv. Rev., 2009, 61, 850–862PubMedCrossRefGoogle Scholar
  122. [122]
    Broderick J.A., Zamore P.D., MicroRNA therapeutics, Gene Ther., 2011, 18, 1104–1110PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Molecular Biology of CancerMedical University of LodzLodzPoland

Personalised recommendations