Skip to main content
Log in

Candidate plant gene homologues in grapevine involved in Agrobacterium transformation

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The grapevine (Vitis vinifera) genome was analyzed in silico for homologues of plant genes involved in Agrobacterium transformation in Arabidopsis thaliana and Nicotiana spp. Grapevine homologues of the glucomannan 4-betamannosyltransferase 9 gene CslA-09 involved in bacterial attachment to the cell wall, homologues of reticulon-like proteins BTI1, 2, 3 and RAB8 GTPases, both involved in T-DNA transfer to the host cell, homologues of VirE2 interacting protein VIP1 that contributes to the targeting of T-DNA into the nucleus and to its integration, and homologues of the histone protein H2A, which promotes the expression of T-DNA encoded genes, were selected. Sequences homologous to the arabinogalactan-protein AtAGP17 were not found in the grape genome. Seventeen selected candidates were tested by semiquantitative RT-PCR analysis for changes in their expression levels upon inoculation with Agrobacterium tumefaciens C58. Of the tested homologues, the expression of VvRab8a, VvVip1a and two histone genes (VvHta2 and VvHta10) increased significantly, therefore we hypothesize that these might be involved in Agrobacterium transformation of V. vinifera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gelvin S.B., Agrobacterium-mediated plant transformation: the biology behind the „gene-jockeying“ tool, Microbiol. Mol. Biol. Rev., 2003, 67, 16–37

    Article  PubMed  CAS  Google Scholar 

  2. Tzfira T., Citovsky V., Agrobacterium: from biology to biotechnology, Springer Science+Business Media LLC., New York, 2008

    Book  Google Scholar 

  3. Cascales E., Christie P.J., Definition of a bacterial type IV secretion pathway for a DNA substrate, Science, 2004, 304, 1170–1173

    Article  PubMed  CAS  Google Scholar 

  4. Dumas F., Duckely M., Pelzar P., van Gelder P., Hohn B., An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells, Proc. Natl. Acad. Sci. USA, 2001, 98, 485–490

    Article  PubMed  CAS  Google Scholar 

  5. Citovsky V., Kozlovsky S.V., Lacroix B., Zaltsman A., Dafny-Yelin M., Vyas S., et al., Biological systems of the host cell involved in Agrobacterium infection, Cell. Microbiol., 2007, 9, 9–20

    Article  PubMed  CAS  Google Scholar 

  6. Garcia-RodrÍguez F.M., Schrammeijer B., Hooykaas P.J.J., The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator, Nucl. Acids Res., 2006, 34, 6496–6504

    Article  PubMed  Google Scholar 

  7. Anand A., Vaghchhipawala Z., Ryu C.M., Kang L., Wang K., del-Pozo O., et al., Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing, Mol. Plant-Microbe Interact., 2007, 20, 41–52

    Article  PubMed  CAS  Google Scholar 

  8. Anand A., Rojas C.M., Tang Y., Mysore K.S., Several components of SKP1/Cullin/F-box E3 ubiquitin ligase complex and associated factors play a role in Agrobacterium-mediated plant transformation, New Phytol., 2012, 195, 203–216

    Article  PubMed  CAS  Google Scholar 

  9. Gelvin S.B., Agrobacterium in the genomic age, Plant Physiol., 2009, 150, 1665–1676

    Article  PubMed  CAS  Google Scholar 

  10. Gelvin S.B., Plant proteins involved in Agrobacterium-mediated genetic transformation, Annu. Rev. Phytopathol., 2010, 48, 45–68

    Article  PubMed  CAS  Google Scholar 

  11. Magori S., Citovsky V., The role of the ubiquitinproteasome system in Agrobacterium tumefaciensmediated genetic transformation of plants, Plant Physiol., 2012, 160, 65–71

    Article  PubMed  CAS  Google Scholar 

  12. Pitzschke A., Hirt H., New insight into an old story: Agrobacterium-induced tumor formation in plants by plant transformation, EMBO J., 2010, 29, 1021–1032

    Article  PubMed  CAS  Google Scholar 

  13. Tzfira T., Citovsky V., Partners in infection: host proteins involved in the transformation of plant cells by Agrobacterium, Trends Cell. Biol., 2002, 12, 121–129

    Article  PubMed  CAS  Google Scholar 

  14. Zhu Y., Nam J., Humara J.M., Mysore K.S., Lee L.-Y., Cao H., et al., Identification of Arabidopsis rat mutants, Plant Physiol., 2003, 132, 494–505

    Article  PubMed  CAS  Google Scholar 

  15. Hwang, H.-H., Gelvin, S. B., Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation, Plant Cell, 2004, 16, 3148–3167

    Article  PubMed  CAS  Google Scholar 

  16. Tzfira T., Vaidya M., Citovsky V., VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity, EMBO J., 2001, 20, 3596–3607

    Article  PubMed  CAS  Google Scholar 

  17. Ditt R.F., Nester E.W., Comai L., Plant gene expression response to Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA, 2001, 98, 10954–10959

    Article  PubMed  CAS  Google Scholar 

  18. Ditt R.F., Kerr K.F., de Figueiredo P., Delrow J., Comai L., Nester E.W., The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens, Mol. Plant-Microbe Interact., 2006, 19, 665–681

    Article  PubMed  CAS  Google Scholar 

  19. Lee C.-W., Efetova M., Engelmann J.C., Kramell R., Wasternack C., Ludwig-Müller J., et al., Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana, Plant Cell, 2009, 21, 2948–2962

    Article  PubMed  CAS  Google Scholar 

  20. Veena, Jiang H., Doerge R.W., Gelvin S.B., Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression, Plant J., 2003, 35, 219–236

    Article  PubMed  CAS  Google Scholar 

  21. Zhu Y., Nam J., Carpita N.C., Matthysse A.G., Gelvin S.B., Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene, Plant Physiol., 2003, 133, 1000–1010

    Article  PubMed  CAS  Google Scholar 

  22. Gaspar Y.M., Nam J., Schultz C.J., Lee L.-Y., Gilson P.R., Gelvin S.B., et al., Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of Agrobacterium transformation, Plant Physiol., 2004, 135, 2162–2171

    Article  PubMed  CAS  Google Scholar 

  23. Zaltsman A., Krichevsky A., Loyter A., Citovsky V., Agrobacterium induces expression of a host F-box protein required for tumorigenicity, Cell Host Microbe, 2010, 7, 197–209

    Article  PubMed  CAS  Google Scholar 

  24. Tenea G.N., Spantzel J., Lee L.-Y., Zhu Y., Lin K., Johnson S.J., et al., Overexpression of several Arabidopsis histone genes increases Agrobacterium-mediated transformation and transgene expression in plants, Plant Cell, 2009, 21, 3350–3367

    Article  PubMed  CAS  Google Scholar 

  25. Tzfira T., Vaidya M., Citovsky V., Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1, Proc. Natl. Acad. Sci. USA., 2002, 99, 10435–10440

    Article  PubMed  CAS  Google Scholar 

  26. Yi H.C., Mysore K.S., Gelvin S.B., Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation, Plant J., 2002, 32, 285–298

    Article  PubMed  CAS  Google Scholar 

  27. Narasimbulu S.B., Deng X.-B., Sarria R., Gelvin S.B., Early transcription of Agrobacterium T-DNA genes in tobacco and maize, Plant Cell, 1996, 8, 873–886

    Google Scholar 

  28. Otten L., Lysopine dehydrogenase activity as an early marker in crown gall transformation, Plant Sci. Lett., 1982, 25, 15–27

    Article  CAS  Google Scholar 

  29. Zhao F., Chen L., Perl A., Chen S., Ma H., Proteomic changes in grape embryogenic callus in response to Agrobacterium tumefaciens-mediated transformation, Plant Sci., 2011, 181, 485–495

    Article  PubMed  CAS  Google Scholar 

  30. Choi Y.J., Yun H.K., Park K.S., Noh J.H., Heo Y.Y., Kim S.H., et al., Transcriptional profiling of ESTs responsive to Rhizobium vitis from ‘Tanmara’ grapevines (Vitis sp.), J. Plant Physiol., 2010, 167, 1084–1092

    Article  PubMed  CAS  Google Scholar 

  31. Nziengui H., Bouhidel K., Pillon D., Der C., Marty F., Schoefs B., Reticulon-like proteins in Arabidopsis thaliana: structural organization and ER localization, FEBS Lett., 2007, 581, 3356–3362

    Article  PubMed  CAS  Google Scholar 

  32. Rutherford S., Moore I., The Arabidopsis Rab GTPase family: another enigma variation, Curr. Opin. Plant Biol., 2002, 5, 518–528

    Article  PubMed  CAS  Google Scholar 

  33. Li J., Krichevsky A., Vaidya M., Tzfira T., Citovsky V., Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium, Proc. Natl. Acad. Sci. USA., 2005, 102, 5733–5738

    Article  PubMed  CAS  Google Scholar 

  34. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Basic local alignment search tool, J. Mol. Biol., 1990, 215, 403–410

    PubMed  CAS  Google Scholar 

  35. Jaillon O., Aury J.-M., Noel B., Policriti A., Clepet C., Casagrande A., et al., The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla, Nature, 2007, 449, 463–468

    Article  PubMed  CAS  Google Scholar 

  36. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., et al., ClustalW and ClustalX version 2, Bioinformatics, 2007, 23, 2947–2948

    Article  PubMed  CAS  Google Scholar 

  37. Rozen S., Skaletsky H., Primer3 on the www for general users and for biologist programmers, In: Krawetz S., Misener S. (Eds.) Bioinformatics Methods and Protocols: Methods in Molecular Biology, Humana Press, Totowa, 2000

    Google Scholar 

  38. Lichtenstein C., Draper J., Genetic engineering of plants, In: Glover D.M. (Ed.) DNA cloning: a practical approach, Vol. II., IRL Press, Oxford, 1986

    Google Scholar 

  39. Schneider C.A., Rasband W.S., Eliceiri K.W., NIH Image to ImageJ: 25 years of image analysis, Nat Methods, 2012, 9, 671–675

    Article  PubMed  CAS  Google Scholar 

  40. Reid K.E., Olsson N., Schlosser J., Peng F., Lund S.T., An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development, BMC Plant Biol., 2006, 6, 27

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to György D. Bisztray or Ernő Szegedi.

About this article

Cite this article

Deák, T., Kupi, T., Oláh, R. et al. Candidate plant gene homologues in grapevine involved in Agrobacterium transformation. cent.eur.j.biol. 8, 1001–1009 (2013). https://doi.org/10.2478/s11535-013-0218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0218-5

Keywords

Navigation