Central European Journal of Biology

, Volume 8, Issue 10, pp 1023–1031 | Cite as

Edible flowers — antioxidant activity and impact on cell viability

  • Zdenka Kucekova
  • Jiri MlcekEmail author
  • Petr Humpolicek
  • Otakar Rop
Research Article


The phenolic compound composition, antioxidant activity and impact on cell viability of edible flower extracts of Allium schoenoprasum; Bellis perennis; Cichorium intybus; Rumex acetosa; Salvia pratensis; Sambucus nigra; Taraxacum officinale; Tragopogon pratensis; Trifolium repens and Viola arvensis was examined for the first time. Total phenolic content of the flowers of these plants fell between 11.72 and 42.74 mg of tannin equivalents/kg of dry matter. Antioxidant activity ranged from 35.56 to 71.62 g of ascorbic acid equivalents/kg of dry matter. Using the Human Hepatocellular Carcinoma cell-line (HepG2) and the Human Immortalized Non-tumorigenic Keratinocyte cell line (HaCaT), we assessed cell viability following a 3 day incubation period in media containing 25, 50, 75 and 100 μg/ml of total phenolic compounds using a colorimetric MTT assay. These three properties could make the herbs useful in treatment of various diseases like cancer. The tested extracts had significant effects on cell viability, but the effects were dependent not only on the phenolic compound concentration and the edible flowers species, but also on the phenolic compound and antioxidant profiles. In addition, responses differed between cell lines.


Antioxidants Polyphenols Herbs Cancer cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mlcek J., Rop O., Fresh edible flowers of ornamental plants — A new source of nutraceutical foods, Trends Food Sci. Tech., 2011, 22, 561–569CrossRefGoogle Scholar
  2. [2]
    Sharif T., Auger C., Alhosin M., Ebel C., Achour M., Étienne-Selloum N., et al., Red wine phenolic compounds cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redoxsensitive up-regulation of p73 and downregulation of UHRF1, Eur. J. Cancer, 2010, 46, 983–994PubMedCrossRefGoogle Scholar
  3. [3]
    Castillo-Pichardo L., Martínez-Montemayor M.M., Martínez J.E., Wall K.M., Cubano L.A., Dharmawardhane S., Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape phenolic compounds, Clin. Exp. Metastasis., 2009, 26, 505–516PubMedCrossRefGoogle Scholar
  4. [4]
    Damianaki A., Bakogeorgou E., Kampa M., Notas G., Hatzoglou A., Panagiotou S., Gemetzi C., et al., Potent inhibitory action of red wine phenolic compounds on human breast cancer cells, J. Cell. Biochem., 2000, 78, 429–441PubMedCrossRefGoogle Scholar
  5. [5]
    Yilmaz Y., Toledo R.T., Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid, J. Agr. Food Chem., 2004, 52, 255–260CrossRefGoogle Scholar
  6. [6]
    Jin H., Tan X., Liu X., Ding Y., The study of effect of tea phenolic compounds on microsatellite instability colorectal cancer and its molecular mechanism, Int. J.Colorectal Dis., 2010, 25, 1407–1415PubMedCrossRefGoogle Scholar
  7. [7]
    Oak M.H., El Bedoui J., Schini-Kerth V.B., Antiangiogenic properties of natural phenolic compounds from red wine and green tea, J. Nutr. Biochem., 2005, 16, 1–8PubMedCrossRefGoogle Scholar
  8. [8]
    Luceri C., Caderni G., Sanna A., Piero D., Red wine and black tea phenolic compounds modulate the expression of cycloxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in azoxymethane-induced F344 rat colon tumors, J. Nutr., 2002, 132, 1376–1379PubMedGoogle Scholar
  9. [9]
    Kuroda Y., Hara Y., Antimutagenic and anticarcinogenic activity of tea phenolic compounds, Mutat. Res., 1999, 436, 69–97PubMedCrossRefGoogle Scholar
  10. [10]
    Schlachterman A., Valle F., Wall K.M., Azios N.G., Castillo L., Morell L., et al., Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model, Transl. Oncol., 2008, 1, 19–27PubMedGoogle Scholar
  11. [11]
    Lin J.K., Liang Y.C., Lin-Shiau S.Y., Cancer chemoprevention by tea phenolic compounds through mitotic signal transduction blockade, Biochem. Pharmacol., 1999, 58, 911–915PubMedCrossRefGoogle Scholar
  12. [12]
    Soleas G.J., Grass L., Josephy P.D., Goldberg D.M., Diamandis E.P., A comparison of the anticarcinogenic properties of four red wine phenolic compounds, Clin. Biochem., 2002, 35, 119–124PubMedCrossRefGoogle Scholar
  13. [13]
    Nichenametla S.N., Taruscio T.G., Barney D.L., Exon J.H., A review of the effects and mechanisms of polyphenolics in cancer, Crit. Rev. Food Sci. Nutr., 2006, 46, 161–183PubMedCrossRefGoogle Scholar
  14. [14]
    Link A., Balaguer F., Goel A., Cancer chemoprevention by dietary phenolic compounds: Promising role for epigenetics, Biochem. Pharmacol., 2010, 80, 1771–1792PubMedCrossRefGoogle Scholar
  15. [15]
    Navarro-Perán E., Cabezas-Herrera J., Campo L.S., Rodríguez-López J.N., Effects of folate cycle disruption by the green tea polyphenol epigallocatechin-3-gallate, Int. J. Biochem. Cell Biol., 2007, 39, 2215–2225PubMedCrossRefGoogle Scholar
  16. [16]
    Poon V.K.M, Burd A., In vitro cytotoxity of silver: implication for clinical wound care, Burns, 2004, 30, 140–147PubMedCrossRefGoogle Scholar
  17. [17]
    Herzog E., Casey A., Lyng F.M., Chambers G., Byrne H.J., Davoren M., A new approach to the toxicity testing of carbon-based nanomaterials-the clonogenic assay, Toxicol Lett. 2007, 174, 49–60PubMedCrossRefGoogle Scholar
  18. [18]
    Mascotti K., McCullough J., Burger S.R., HPC viability measurement: trypan blue versus acridine orange and propidium iodide, Transfusion, 2002, 40, 693–696CrossRefGoogle Scholar
  19. [19]
    Strober W., Trypan blue exclusion test of cell viability, Curr Protoc Immunol., 2001, 21, A.3B.1–A.3B.2Google Scholar
  20. [20]
    Moravcikova D., Kucekova Z., Mlcek J., Rop O., Humpolicek P., Compositions of polyphenols in wild chive, meadow salsify, garden sorrel and ag yoncha and their anti-proliferative effect, Acta Univ. Agric. Et Silvic. Mendel. Brun., 2012, 60, 125–132CrossRefGoogle Scholar
  21. [21]
    Mosmann T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 1983, 65, 55–63PubMedCrossRefGoogle Scholar
  22. [22]
    Hakimuddin F., Tiwari K., Paliyath G., Meckling K., Grape and wine phenolic compounds downregulate the expression of signal transduction genes and inhibit the growth of estrogen receptor-negative MDA-MB231 tumors in nu/nu mouse xenografts, Nutr. Res., 2008, 28, 702–713PubMedCrossRefGoogle Scholar
  23. [23]
    Lee Y.T., Don M.J., Hung P.S., Shen Y.C., Lo Y.S., Chang K.W., et al., Cytotoxicity of phenolic acid phenethyl esters on oral cancer cells, Cancer Lett. Vol., 2004, 223, 19–25PubMedCrossRefGoogle Scholar
  24. [24]
    Brand-Williams W., Cuvelier M.E., Berset C., Use of a free radical method to evaluate antioxidant aktivity, LWT-Food Sci. Technol., 1995, 28, 25–30CrossRefGoogle Scholar
  25. [25]
    Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Byrne D.H., Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Compos. Anal., 2006, 19, 669–675CrossRefGoogle Scholar
  26. [26]
    Rupasinghe H.P.V., Jayasankar S., Lay W., Variation in total phenolic and antioxidant capacity among European plum genotypes, Sci. Hortic., 2006, 108, 243–246CrossRefGoogle Scholar
  27. [27]
    Boukamp P., Petrussevska R., Breitkreutz D., Hornung J., Markham A., Normal keratinization in a spontaneously immortalized aneuploid keratinocyte cell line, J. Cell. Biol., 1988, 106, 761–771PubMedCrossRefGoogle Scholar
  28. [28]
    Kucekova Z., Mlcek J., Humpolicek P., Rop O., Valasek P., Saha P., Phenolic compounds contained in Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and thein antiproliferative effect, Molecules, 2011, 16, 9207–17PubMedCrossRefGoogle Scholar
  29. [29]
    Brighente I.M.C., Dias M., Verdi L.G., Pizzolatti M.G., Antioxidant Activity and Total Phenolic Content of Some Brazilian Species, Pharm. Biol., 2007, 45, 156–161CrossRefGoogle Scholar
  30. [30]
    Spina M., Cuccioloni M., Sparapani L., Acciarri S., Eleuteri A., Fioretti E., et al., Comparative evaluation of flavonoid content in assessing quality of wild and cultivated vegetables for human consumption, J. Sci. Food Agr., 2008, 88, 294–304CrossRefGoogle Scholar
  31. [31]
    Rieger G., Muller M., Guttenberger H., Bucar F., Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus, J. Agr. Food Chem., 2008, 56, 9080–9086CrossRefGoogle Scholar
  32. [32]
    Tolra R.P, Poschenrieder C., Luppi B., Barce, J., Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L., Environ. Exp. Bot., 2005, 54, 231–238CrossRefGoogle Scholar
  33. [33]
    Stoggl W.M., Huck C.W., Bonn G.K., Structural elucidation of catechin and epicatechin in sorrel leaf extracts using liquid-chromatography coupled to diode array-, fluorescence-, and mass spectrometric detection, J. Sep. Sci., 2004, 27, 524–528PubMedCrossRefGoogle Scholar
  34. [34]
    Severino J.F., Stich K., Soja G., Ozone stress and antioxidant substances in Trifolium repens and Centaurea jacea leaves, Environ. Pollut., 2007, 146, 707–714PubMedCrossRefGoogle Scholar
  35. [35]
    Miliauskas G., Venskutonis P.R., van Beek T.A., Screening of radical scavenging activity of some medicinal and aromatic plant extracts, Food Chem., 2004, 85, 231–237CrossRefGoogle Scholar
  36. [36]
    Newell A., Yousef G., Lila M.A., Ramírez-Mares M.V., Gonzalez de Mejia E., Comparative in vitro bioactivities of tea extracts from six species of Ardisia and thein effect on growth inhibition of HepG2 cells, J. Ethnopharmacol., 2010, 130, 536–544PubMedCrossRefGoogle Scholar
  37. [37]
    Yu H.B., Li D.Y., Zhang H.F., Xue H.Z., Pan C.E., Zhao S.H., et al., Resveratrol Inhibits Invasion and Metastasis of Hepatocellular Carcinoma Cells, J. Anim. Vet. Adv., 2010, 9, 3117–3124CrossRefGoogle Scholar
  38. [38]
    Belen G.A., Angeles M.M., Bravo L., Goya L., Ramos S., Quercetin modulates NF-κB and AP-1/JNK pathways to induce cell death in human hepatoma cells, Nutr. Cancer, 2010, 62, 390–401CrossRefGoogle Scholar
  39. [39]
    Svobodova A., Zdarilova A., Vostalova J., Lonicera caerulea and Vaccinium myrtillus fruit phenolic compounds protect HaCaT keratinocytes against UVB-induced phototoxic stress and DNA damage, J. Dermatol. Sci., 2009, 56, 196–204PubMedCrossRefGoogle Scholar
  40. [40]
    Nakajima Y., Nishida H., Matsugo S., Konishi T., Cancer cell cytotoxicity of extracts and small phenolic compounds from Chaga, J. Med. Food, 2009, 12, 501–507PubMedCrossRefGoogle Scholar
  41. [41]
    Solakidi S., Psarra A.M.G., Sekeris C.E., Differential subcellular distribution of estrogen receptor isoforms: Localization of ER alpha in the nucleoli and ER beta in the mitochondria of human osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cell lines, BBA-Mol. Cel. Res., 2005, 1745, 382–392Google Scholar
  42. [42]
    Planas-Silva M.D., Donaher J.L., Weinberg R.A.M., Functional activity of ectopically expressed estrogen receptor is not sufficient for estrogenmediated cyclin D1 expression, Cancer Res., 1999, 59, 4788–4792PubMedGoogle Scholar
  43. [43]
    Bowers J.L., Tyulmenkov V.V., Jernigan S.C., Klinge C.M., Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta, Endocrinology, 2000, 141, 3657–3667PubMedCrossRefGoogle Scholar
  44. [44]
    Perdew G.H., Hollingshead B.D., DiNatale B.C., Morales J.L., Labrecque M.P., Takhar M.K., et al., Estrogen receptor expression is required for low-dose Resveratrol-mediated repression of aryl hydrocarbon receptor activity source, J. Pharmacol. Exp. Ther., 2010, 335, 273–283PubMedCrossRefGoogle Scholar
  45. [45]
    Barhoover M.A., Hall J.M., Greenlee W.F., Thomas R.S., Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4, Mol. Pharmacol., 2010, 77, 195–201PubMedCrossRefGoogle Scholar
  46. [46]
    Narayanan B.A., Narayanan N.K., Re G.G., Nixon D.W., Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets, Int. J. Cancer, 2003, 104, 204–212PubMedCrossRefGoogle Scholar
  47. [47]
    Kao T.K., Ou Y.C., Raung S.L., Chen W.Y., Yen Y.J., Lai C.Y., et al., Graptopetalum paraguayense E. Walther leaf extracts protect against brain injury in ischemic rats, Am. J. Chinese Med., 2010, 38, 495–516CrossRefGoogle Scholar
  48. [48]
    Kim B.H., Lee I.J., Lee H.Y., Han S.B., Hong J.T., Ahn B., et al., Quercetin 3-O-beta-(2“-galloyl)-glucopyranoside inhibits endotoxin LPSinduced IL-6 expression and NF-KB activation in macrophages, Cytokine, 2007, 39, 207–215PubMedCrossRefGoogle Scholar
  49. [49]
    Szliszka E., Zydowicz G., Janoszka B., Dobosz C., Kowalczyk-Ziomek G., Krol W., Ethanolic extract of Brazilian green propolis sensitizes prostate cancer cells to TRAIL-induced apoptosis, Int. J. Oncol., 2011, 38, 941–953PubMedGoogle Scholar
  50. [50]
    Maggi-Capeyron M.F., Ceballos P., Cristol J.P., Delbosc S., Le Doucen C., Pons M., et al., Wine phenolic antioxidants inhibit AP-1 transcriptional activity, J. Agr. Food Chem., 2001, 49, 5646–5652CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Zdenka Kucekova
    • 1
    • 2
  • Jiri Mlcek
    • 3
    Email author
  • Petr Humpolicek
    • 1
    • 2
  • Otakar Rop
    • 4
  1. 1.Centre of Polymer SystemsUniversity Institute, Tomas Bata University in ZlinZlinCzech Republic
  2. 2.Polymer Centre, Faculty of TechnologyTomas Bata University at ZlinZlinCzech Republic
  3. 3.Department of Food Technology, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  4. 4.Department of GastronomyCollege of Business and Hotel ManagementBrnoCzech Republic

Personalised recommendations