Skip to main content
Log in

Changes in L-phenylalanine ammonia-lyase activity and isoflavone phytoalexins accumulation in soybean seedlings infected with Sclerotinia sclerotiorum

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Soybean [Glycine max (L.) Merr.] cultivars (Meli, Alisa, Sava and 1511/99) were grown up to V1 phase (first trifoliate and one node above unifoliate) and then inoculated with Sclerotinia sclerotiorum (Lib.) de Bary under controlled conditions. Changes in L-phenylalanine ammonia-lyase (PAL) activity and isoflavone phytoalexins were recorded 12, 24, 48 and 72 h after the inoculation. Results showed an increase in PAL activity in all four examined soybean cultivars 48 h after the inoculation, being the highest in Alisa (2-fold higher). Different contents of total daidzein, genistein, glycitein and coumestrol were detected in all samples. Alisa and Sava increased their total isoflavone content (33.9% and 6.2% higher than control, respectively) as well as 1511/99, although 48 h after the inoculation its content decreased significantly. Meli exhibited the highest rate of coumestrol biosynthesis (72 h after the inoculation) and PAL activity (48 h after the inoculation). All investigated cultivars are invariably susceptible to this pathogen. Recorded changes could point to possible differences in mechanisms of tolerance among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartman G.L., Curtis B.H., 13 Diseases of Soybean and Their Management, In: Singh G. (Ed.), The Soybean: Botany, Production and Uses, CABI Publishing, Cambridge, USA, 2010

    Google Scholar 

  2. Torres M.A., ROS in biotic interaction, Physiol. Plantarum, 2010, 138, 414–429

    Article  CAS  Google Scholar 

  3. Paxton D.J., Assays for antifungal activity, Met. Plant Biochem., 1991, 6, 33–46

    CAS  Google Scholar 

  4. Huckelhoven R., Cell wall-associated mechanisms of disease resistance and susceptibility, Annu. Rev. Phytopathol., 2007, 45, 101–127

    Article  PubMed  Google Scholar 

  5. Bazzalo M.E., Heber E., Caso O.H., Factores fisicos y localizacion anatomica de compuestos fenólicos en relacion con la tolerancia del tallo del girasol (Helianthus annuus) frente a Sclerotinia sclerotiorum, causal de la podredumbre basal, Bol. Soc. Argent. Bot., 1987, 25, 197–212

    Google Scholar 

  6. Hagmann M.L., Heller W., Grisebach H., Induction of phytoalexin synthesis in soybean. Stereospecific 3,9-dihydroxypterocarpan 6a-hydroxylase from elicitor-induced soybean cell cultures, Eur. J. Biochem., 1984, 142, 127–131

    Article  PubMed  CAS  Google Scholar 

  7. Dixon R.A., Paiva N.L., Stress-induced phenylpropanoid metabolism, Plant Cell, 1995, 7, 1085–1097

    PubMed  CAS  Google Scholar 

  8. Modolo L.V., Cunha F.Q., Braga M.R., Salgado I., Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor, Plant Physiol., 2002, 130, 1288–1297

    Article  PubMed  CAS  Google Scholar 

  9. Lee J.H., Renita M., Fioritto R.J., Martin S.K., Schwartz S.J., Vodovotz, Y., Isoflavone characterization and antioxidant activity in Ohio soybean, J. Agic. Food Chem., 2004, 52, 2647–2651

    Article  CAS  Google Scholar 

  10. Lee S.J., Yan W., Ahn J.K., Chung I.M., Effects of year, site, genotype and their interactions on various soybean isoflavones, Field Crops Res., 2003, 81, 181–192

    Article  Google Scholar 

  11. Tepavčević V., Cvejić J., Poša M., Popović J., Isoflavone content and composition in soybean, In: Ng T.B. (Ed.), Soybean — Biochemistry, Chemistry and Physiology, InTech, Rijeka, 2011

    Google Scholar 

  12. Boue S.M., Carter C.H., Ehrlich K.C., Cleveland T.E., Induction of the soybean phytoalexins coumestrol and glyceollin by Aspergillus, J. Agr. Food Chem., 2000, 48, 2167–2172

    Article  CAS  Google Scholar 

  13. Cvejić J., Tepavčević V., Bursać M., Miladinović J., Malenčić Đ., Isoflavone composition in F1 soybean progenies, Food Res. Int., 2011, 44, 2698–2702

    Article  Google Scholar 

  14. Bazzalo M.E., Heber E., Del Pero de Martines M.A., Caso O.H., Phenolic compounds in stems of sunflower plants inoculated with Sclerotinia sclerotiorum and their inhibitory effects on the fungus, Phytopathology, 1985, 112, 322–332

    Article  CAS  Google Scholar 

  15. Malenčić Dj., Kiprovski B., Popović M., Prvulović D., Miladinović J., Djordjević V., Changes in antioxidant system in soybean as affected by Sclerotinia sclerotiorum (Lib.) de Bary, Plant Physiol. Biochem., 2010, 48, 903–908

    Article  PubMed  Google Scholar 

  16. Gerasimova N.G., Pridvorova S.M., Ozeretskovskaya O.L., Role of L-phenylalanine ammonia lyase in the induced resistance and susceptibility of potato plants, Appl. Biochem. Micro., 2005, 41, 117–120

    CAS  Google Scholar 

  17. Welle R., Schröder G., Schiltz E., Grisebach H., Schröder J., Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. cv. Harosoy 63), Eur. J. Biochem., 1991, 196, 423–430

    Article  PubMed  CAS  Google Scholar 

  18. Boue S.M., Tilghman S.L., Elliott S., Zimmerman M., Williams K.Y., Payton-Stewart F., et al., Identification of the potent phytoestrogen glycinol in elicited soybean (Glycine max), Endocrinology, 2009, 150, 2446–2453

    Article  PubMed  CAS  Google Scholar 

  19. Cornille P., Battesti C., Agnel J.P., Montillet J.L., Evidence against a role of lipid peroxidation in the induction of glyceollin biosynthesis in Glycine max, Plant Physiol. Bioch., 1998, 36, 525–532

    Article  CAS  Google Scholar 

  20. Salvo V.A., Boue S.M., Fonseca J.P., Elliott S., Corbitt C., Collins-Burow B.M., et al., Antiestrogenic glyceollins suppress human breast and ovarian carcinoma tumorigenesis, Clin. Cancer Res., 2006, 12, 7159–7164

    Article  PubMed  CAS  Google Scholar 

  21. Zimmermann M., Tilghman S.L., Boue S.M., Salvo V.A., Elliott S., Williams K., et al., Glyceollin I, A novel antiestrogenic phytoalexin isolated from activated soy, J. Pharmacol. Exp. Ther., 2010, 332, 35–45

    Article  PubMed  CAS  Google Scholar 

  22. Wegulo S.N., Yang X-B., Martinson C.A., Murphy P.A., Effects of wounding and inoculation with Sclerotinia sclerotiorum on isoflavone concentrations in soybean, Canadian J. Plant Sci., 2005, 85, 749–760

    Article  Google Scholar 

  23. Boue S.M., Shih F.F., Shih B.Y., Daigle K.W., Carter-Wientjes C.H., Cleveland T.E., Effect of biotic elicitors on enrichment of antioxidant properties and induced isoflavones in soybean, J. Food Sci., 2008, 73, 43–49

    Article  Google Scholar 

  24. Sakthivelu G., Akitha Devi M.K., Giridhar P., Rajasekaran T., Ravishankar G.A., Nikolova M.T., et al., Isoflavone composition, phenol content, and antioxidant activity of soybean seeds from India and Bulgaria, J. Agic. Food Chem., 2008, 56, 2090–2095

    Article  CAS  Google Scholar 

  25. Landini S., Graham M.Y., Graham T.L., Lactofen induces isoflavone accumulation and glyceollin elicitation competency in soybean, Phytochem., 2003, 62, 865–874

    Article  CAS  Google Scholar 

  26. Shaohua L., Norris D.M., Hartwig E.E., Mian X., Inducible phytoalexins in juvenile soybean genotypes predict soybean looper resistance in the fully developed plants, Plant Physiol., 1992, 100, 1479–1485

    Article  Google Scholar 

  27. Cheng J., Yuan C., Graham T.L., Potential defenserelated prenylated isoflavones in lactofen-induced soybean, Phytochemistry, 2011, 72, 875–881

    Article  CAS  Google Scholar 

  28. Graham T.L., Graham M.Y., Signaling in soybean phenylpropanoid responces, Plant Physiol, 1996, 110, 1123–1133

    PubMed  CAS  Google Scholar 

  29. Lozovaya V.V., Lygin A.V., Zernova O.V., Li S., Hartman G.L., Widholm J.M., Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani, Plant Physiol. Biochem., 2004, 42, 671–679

    Article  PubMed  CAS  Google Scholar 

  30. Durango D., Quiñones W., Torres F., Rosero Y., Gil J., Echeverri F., Phytoalexin accumulation in colombian bean varieties and aminosugars as elicitors, Molecules, 2002, 7, 817–832

    Article  CAS  Google Scholar 

  31. Cvejić J., Malenčić Đ., Tepavčević V., Poša M., Miladinović J., Determination of phytoestrogen composition in soybean cultivars in Serbia, Nat. Prod. Commun., 2009, 4, 1069–1074

    PubMed  Google Scholar 

  32. Saharan G.S., Mehta N., Sclerotinia diseases of crop plants: biology, ecology and disease management, Springer, Heidelberg, 2008

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djordje Malenčić.

About this article

Cite this article

Malenčić, D., Cvejić, J., Tepavčević, V. et al. Changes in L-phenylalanine ammonia-lyase activity and isoflavone phytoalexins accumulation in soybean seedlings infected with Sclerotinia sclerotiorum . cent.eur.j.biol. 8, 921–929 (2013). https://doi.org/10.2478/s11535-013-0201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0201-1

Keywords

Navigation