Skip to main content
Log in

Drosophila Nimrod proteins bind bacteria

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Engulfment of foreign particles by phagocytes is initiated by the engagement of phagocytic receptors. We have previously reported that NimC1 is involved in the phagocytosis of bacteria in Drosophila melanogaster. We have identified a family of genes, the Nimrod gene superfamily, encoding characteristic NIM domain containing structural homologues of NimC1. In this work we studied the bacterium-binding properties of the Nimrod proteins by using a novel immunofluorescencebased flow cytometric assay. This method proved to be highly reproducible and suitable for investigations of the bacteriumbinding capacities of putative phagocytosis receptors. We found that NimC1, NimA, NimB1 and NimB2 bind bacteria significantly but differently. In this respect they are similar to other NIM domain containing receptors Eater and Draper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stuart L.M., Ezekowitz R.A., Phagocytosis: Elegant complexity, Immunity, 2005, 22, 539–550

    Article  PubMed  CAS  Google Scholar 

  2. Kurucz E., Márkus R., Zsámboki J., Folkl-Medzihradszky K., Darula Z., Vilmos P., et al., Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes, Curr. Biol., 2007, 17, 649–654

    Article  PubMed  CAS  Google Scholar 

  3. Stuart L.M., Ezekowitz R.A., Phagocytosis and comparative innate immunity: learning on the fly, Nat. Rev. Immunol., 2008, 2, 131–141

    Article  Google Scholar 

  4. Ulvila J., Vanha-Aho L.M., Rämet M., Drosophila phagocytosis — still many unknowns under the surface, APMIS., 2011, 119, 651–662

    Article  PubMed  CAS  Google Scholar 

  5. Somogyi K., Sipos B., Pénzes Z., Andó I., A conserved gene cluster as a putative functional unit in insect innate immunity, FEBS Lett., 2010, 584, 4375–4378

    Article  PubMed  CAS  Google Scholar 

  6. Irving P., Ubeda J.M., Doucet D., Troxler L., Lagueux M., Zachary D., et al., New insights into Drosophila larval haemocyte functions through genome-wide analysis, Cell Microbiol., 2005, 7, 335–350

    Article  PubMed  CAS  Google Scholar 

  7. Kocks C., Cho J.H., Nehme N., Ulvila J., Pearson A.M., Meister M., et al., Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila, Cell, 2005, 123, 335–346

    Article  PubMed  CAS  Google Scholar 

  8. Chung Y.A., Kocks C., Recognition of pathogenic microbes by the Drosophila phagocytic pattern recognition receptor, Eater, J. of Biol. Chem., 2011, 286, 26524–26532

    Article  CAS  Google Scholar 

  9. Hashimoto Y., Tabuchi Y., Sakurai K., Kutsuna M., Kurokawa K., Awasaki T., et al., Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes, J. Immunol., 2009, 183, 7451–7460

    Article  PubMed  CAS  Google Scholar 

  10. Konrad L., Becker G., Schmidt A., Klockner T., Kaufer-Stillger G., Dreschers S., et al., Cloning, structure, cellular localization, and possible function of the tumor suppressor gene lethal(3)malignant blood neoplasm-1 of Drosophila melanogaster, Dev. Biol., 1994, 163, 98–111

    Article  PubMed  CAS  Google Scholar 

  11. Goto A., Kadowaki T., Kitagawa Y., Drosophila hemolectin gene is expressed in embryonic and larval hemocytes and its knock down causes bleeding defects, Dev. Biol., 2003, 264, 582–591

    Article  PubMed  CAS  Google Scholar 

  12. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol., 2006, 2, 1–11

    Article  Google Scholar 

  13. Kurucz E., Zettervall C.J., Sinka R., Vilmos P., Pivarcsi A., Ekengren S., et al., Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila, PNAS, 2003, 100, 2622–2627

    Article  PubMed  CAS  Google Scholar 

  14. Kurucz E., Váczi B., Márkus R., Laurinyecz B., Vilmos P., Zsámboki J., et al., Definition of Drosophila hemocyte subsets by cell-type specific antigens, Acta Biol. Hung., 2007, 58, 95–111

    Article  PubMed  Google Scholar 

  15. Honti V., Kurucz E., Csordás G., Laurinyecz B., Márkus R., Andó I., In vivo detection of lamellocytes in Drosophila melanogaster, Immunol. Lett., 2009, 126, 83–84

    Article  PubMed  CAS  Google Scholar 

  16. Ren J., Wen L., Gao X., Jin C., Xue Y., Yao X., DOG 1.0: Illustrator of Protein Domain Structures, Cell Res., 2009, 19, 271–273

    Article  PubMed  CAS  Google Scholar 

  17. Chen L., Coleman W.G. Jr., Cloning and characterization of the Escherichia coli K-12 rfa-2 (rfaC) gene, a gene required for lipopolysaccharide inner core synthesis, J. Bact., 1993, 175, 2534–2540

    PubMed  CAS  Google Scholar 

  18. Heinrichs D.E., Yethon J.A., Whitfield C., Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica, Mol. Microbiol., 1998, 30, 221–232

    Article  PubMed  CAS  Google Scholar 

  19. Qimron U., Marintcheva B., Tabor S., Richardson C.C., Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage, PNAS, 2006, 103, 19039–19044

    Article  PubMed  CAS  Google Scholar 

  20. Markovic I., Pulyaeva H., Sokoloff A., Chernomordik L.V., Membrane fusion mediated by baculovirus gp64 involves assembly of stable gp64 trimers into multiprotein aggregates, J. Cell Biol., 1998, 143, 1155–1166

    Article  PubMed  CAS  Google Scholar 

  21. Cuttell L., Vaughan A., Silva E., Escaron C.J., Lavine M., Van Goethem E., et al., Undertaker, a Drosophila junctophilin, links Draper-mediated phagocytosis and calcium homeostasis, Cell, 2008, 135, 524–534

    Article  PubMed  CAS  Google Scholar 

  22. Blom N., Gammeltoft S., Brunak S., Sequenceand structure-based prediction of eukaryotic protein phosphorylation sites, J. Mol. Biol., 1999, 294, 1351–1362

    Article  PubMed  CAS  Google Scholar 

  23. Somogyi K., Sipos B., Pénzes Z., Kurucz E., Zsámboki J., Hultmark D., et al., Evolution of genes and repeats in the Nimrod superfamily, Mol. Biol. Evol., 2008, 25, 2337–2347

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Zsámboki, J., Csordás, G., Honti, V. et al. Drosophila Nimrod proteins bind bacteria. cent.eur.j.biol. 8, 633–645 (2013). https://doi.org/10.2478/s11535-013-0183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0183-4

Keywords

Navigation