Skip to main content
Log in

High genetic differentiation among wild populations of alien Medicago sativa in Lithuania

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Alfalfa (Medicago sativa; =M. sativa ssp. sativa) in Lithuania is sown as albuminous forage for cattle due to favourable climatic condition. Over many generations, alfalfa plants have escaped from cultivation fields into natural ecosystems and established wild populations. We collected and analyzed individuals from seventeen wild populations of M. sativa. Using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses, 117 RAPD and 64 ISSR reproducible and highly polymorphic (90.8% for RAPD and 86.3% for ISSR) loci were established. AMOVA showed a high genetic differentiation of M. sativa populations for both types of DNA markers utilized. According to RAPD markers, the genetic variability among populations was 63.1% and 57.0% when ISSR markers were used. Taken together, these results demonstrate that wild populations of M. sativa possess a high potential of genetic variability, that could potentially result in colonization of natural ecosystems. The UPGMA cluster analysis also showed that the DNA markers discovered in this study can distinguish between M. sativa and M. falcata (=M. sativa ssp. falcata) populations and therefore may be used to study the genetic impact of M. sativa on the native populations of M. falcata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michaud R., Lehman W.F., Runbaugh M.D., World distribution and historical development, In: Hanson A.A., Barnes D.K., Hill R.R. (Eds.), Alfalfa and alfalfa improvement, Agronomy Monograph No 29, Madison, USA, 1988

    Google Scholar 

  2. Kaljund K., Leht M., Medicago falcata L. in Estonia: chromosomal and morphological variability, distribution and vulnerability of taxa, Acta Biol. Univ. Daugavp., 2010, S2, 107–119

    Google Scholar 

  3. Gunn C.R., Skrdla W.H., Spencer H.C., Classification of Medicago sativa L. using legume characters and flower colors, Agricultural research service United States department of agriculture, Washington D.C., Technical Bulletin, 1978, 1574, 4–19

    Google Scholar 

  4. Julier B., Porcheron A., Ecalle C., Guy P., Genetic variability for morphology, growth and forage yield among perennial diploid and tetraploid lucerne populations (Medicago sativa L.), Agronomie, 1995, 15, 295–304

    Article  Google Scholar 

  5. Falahati-Anbaran M., Habashi A.A., Esfahany M., Mohammadi S.A., Ghareyazie B., Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centres of origin of the species, J. Genetics, 2007, 86, 59–63

    Article  CAS  Google Scholar 

  6. Mengoni A., Gori A., Bazzicalupo M., Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa, Plant Breed., 2000, 119, 311–317

    Article  CAS  Google Scholar 

  7. Touil L., Guesmi F., Fares K., Ferchichi A., Genetic diversity of some Mediterranean populations of the cultivated alfalfa (Medicago sativa L.) using ISSR markers, Biotechnology, 2008, 7, 808–812

    Article  CAS  Google Scholar 

  8. Gudžinskas Z., Conspectus of alien species of Lithuania. 10. Fabaceae, Botanica Lithuanica, 1999, 5, 103–114

    Google Scholar 

  9. Lambdon P.W., Pyšek P., Basnou C., Hejda M., Arianoutsou M., Essl F., et al., Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs, Preslia, 2008, 80, 101–149

    Google Scholar 

  10. Mack R.N., Invading plants: their potential contribution to population biology, In: White J. (Ed.), Studies on Plant Demography, A Festschrift for John L. Harper, Academic, London, 1985

    Google Scholar 

  11. Ellstrand N.C., Schierenbeck K.A, Hybridization as a stimulus for the evolution of invasiveness in plants? Proc. Nat. Acad. Sci. USA, 2000, 97, 7043–7050

    Article  PubMed  CAS  Google Scholar 

  12. Ghérardi M., Mangin B., Goffinet B., Bonnet D., Huguet T., A method to measure genetic distance between allogamous populations of alfalfa (Medicago sativa) using RAPD molecular markers, Theor. Appl. Genet., 1998, 96, 406–412

    Article  Google Scholar 

  13. Jenczewski E., Prosperi J.M., Ronfort J., Differentiation between natural and cultivated populations of Medicago sativa (Leguminosae) from Spain: analysis with random amplified polymorphic DNA (RAPD) markers and comparison to allozymes, Mol. Ecol., 1999, 8, 1317–1330

    Article  PubMed  CAS  Google Scholar 

  14. Bleeker W., Schmitz U., Ristow M., Interspecific hybridisation between alien and native plant species in Germany and its consequences for native biodiversity, Biol. Conserv., 2007, 137, 248–253

    Article  Google Scholar 

  15. Crea F., Calderini O., Nenz E., Cluster P.D., Damiani F., Arcioni S., Chromosomal and molecular rearrangements in somatic hybrids between tetraploid Medicago sativa and diploid Medicago falcata, Theor. Appl. Genet., 1997, 95, 1112–1118

    Article  CAS  Google Scholar 

  16. Julier B., Flajoulot S., Barre P., Cardinet G., Santoni S., Huguet T., et al., Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers, BMC Plant Biol., 2003, 3, 9

    Article  PubMed  Google Scholar 

  17. Sledge M.K., Ray I.M., Jiang G., An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.), Theor. Appl. Genet., 2005, 111, 980–992

    Article  PubMed  CAS  Google Scholar 

  18. Nagl N., Taski-Ajdukovic K., Barac G., Baburski A., Seccareccia I., Milic D., et al., Estimation of the genetic diversity in tetraploid alfalfa populations based on RAPD markers for breeding purposes, Int. J. Mol. Sci., 2011, 12, 5449–5460

    Article  PubMed  CAS  Google Scholar 

  19. Wang X., Yang X., Chen L., Feng G., Zhang J., Jin L., Genetic diversity among alfalfa (Medicago sativa L.) cultivars in Northwest China, Acta Agric. Scand. Sect B, 2011, 61, 60–66

    CAS  Google Scholar 

  20. Busbice T.H., Predicting yield of synthetic varieties, Crop Sci., 1970, 10, 265–269

    Article  Google Scholar 

  21. Hill R.R., Elgin J.H., Effect of the number of parents of performance of alfalfa synthetics, Crop Sci., 1981, 21, 298–300

    Article  Google Scholar 

  22. Crochemore M.L., Huyghe C., Écalle C., Julier B., Structuration of alfalfa genetic diversity using agronomic and morphological characteristics. Relationship with RAPD markers, Agronomie, 1998, 18, 79–94

    Article  Google Scholar 

  23. Kidwell K.K., Woodfield D.R., Bingham E.T., Osborn T.C., Molecular marker diversity and yield of isogenic 2x and 4x single-crosses of alfalfa, Crop Sci., 1994, 34, 784–788

    Article  Google Scholar 

  24. Maureira I.J., Ortega F., Campos H., Osbora T.C., Population structure and combining ability of diverse Medicago sativa germplasms, Theor. Appl. Genet., 2004, 109, 775–782

    Article  PubMed  CAS  Google Scholar 

  25. Crochemore M.L., Huyghe C., Kerlan M.C., Durand F., Julier B., Partitioning and distribution of RAPD variation in a set of populations of the Medicago sativa complex, Agronomie, 1996, 16, 421–432

    Article  Google Scholar 

  26. Musial J.M., Basford K.E., Irwin J.A.G., Analysis of genetic diversity within Australian lucerne cultivars and implications for future genetic improvement, Aust. J. Agric. Res., 2002, 53, 629–636

    Article  Google Scholar 

  27. Tucak M., Popović S., Čupić T., Grljušić S., Bolarić S., Kozumplik V., Genetic diversity of alfalfa (Medicago spp.) estimated by molecular markers and morphological characters, Period. Biol., 2008, 110, 243–249

    CAS  Google Scholar 

  28. Segovia-Lerma A., Cantrell R.G., Conway J.M., Ray I.M., AFLP-based assessment of genetic diversity among nine alfalfa germplasms using bulk DNA templates, Genome, 2003, 46, 51–58

    Article  PubMed  CAS  Google Scholar 

  29. Riday H., Brummer E.C., Campbell T.A., Luth D., Cazcarro P.M., Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata, Euphytica, 2003, 131, 37–45

    Article  CAS  Google Scholar 

  30. Ziętkiewicz E., Rafalski A., Labuda D., Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, Genomics, 1994, 20, 176–183

    Article  PubMed  Google Scholar 

  31. Fernández M.E., Figueiras A.M., Benito C., The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin, Theor. Appl. Genet., 2002, 104, 845–851

    Article  PubMed  Google Scholar 

  32. Jonavičienė K., Paplauskienė V., Brazauskas G., Isozymes and ISSR markers as a tool for the assessment of genetic diversity in Phleum sp., Žemdirbystė=Agriculture, 2009, 96, 47–57

    Google Scholar 

  33. Wang H.Z., Wu Z.X., Lu J.J., Shi N.N., Zhao Y., Zhang Z.T., et al., Molecular diversity and relationships among Cymbidium goeringii cultivars based on inter-simple sequence repeat (ISSR) markers, Genetica, 2009, 136, 391–399

    Article  PubMed  CAS  Google Scholar 

  34. Patamsytė J., Čėsnienė T., Naugžemys D., Kleizaitė V., Vaitkūnienė V., Rančelis V., et al., Genetic diversity of warty cabbage (Bunias orientalis L.) revealed by RAPD and ISSR markers, Žemdirbystė=Agriculture, 2011, 98, 293–300

    Google Scholar 

  35. Ward S.M., Reid S.D., Harrington J., Sutton J., Beck K.G., Genetic variation in invasive populations of yellow toadflax (Linaria vulgaris) in the Western United States, Weed Sci., 2008, 56, 394–399

    Article  CAS  Google Scholar 

  36. Zybartaite L., Jodinskiene M., Zukauskiene J., Janssens S. B., Paulauskas A., Kupcinskiene E., RAPD analysis of genetic diversity among Lithuanian populations of Impatiens glandulifera, Žemdirbystė=Agriculture, 2011, 98, 391–398

    Google Scholar 

  37. Atienzar F., Evenden A., Jha A., Savva D., Depledge M., Optimized RAPD analysis generates highquality genomic DNA profiles at high annealing temperature, BioTechniques, 2000, 28, 52–54

    PubMed  CAS  Google Scholar 

  38. Yu K., Pauls K.P., Rapid estimation of genetic relatedness among heterogeneous populations of alfalfa by random amplification of bulked genomic DNA samples, Theor. Appl. Genet., 1993, 86, 788–794

    CAS  Google Scholar 

  39. Nei M., Li W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Nat. Acad. Sci. USA, 1979, 76, 5269–5273

    Article  PubMed  CAS  Google Scholar 

  40. Van de Peer Y., De Wachter R., TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Appl. Biosci., 1994, 10, 569–570

    PubMed  Google Scholar 

  41. Excoffier L., Smouse P.E., Quattro J.M., Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data, Genetics, 1992, 131, 479–491

    PubMed  CAS  Google Scholar 

  42. Chapman H., Robson B., Pearson M.L., Population genetic structure of a colonising, triploid weed, Hieracium lepidulum, Heredity, 2004, 92, 182–188

    Article  PubMed  CAS  Google Scholar 

  43. Nei M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics, 1978, 89, 583–590

    PubMed  CAS  Google Scholar 

  44. Peakall R., Smouse P.E., GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, 6, 288–295

    Article  Google Scholar 

  45. Wu W., Zheng Y.L., Chen L., Wei Y.M., Yang R.W., Yan Z.H., Evaluation of genetic relationships in the genus Houttuynia Thunb. in China based on RAPD and ISSR markers, Biochem. Syst. Ecol., 2005, 33, 1141–1157

    Article  CAS  Google Scholar 

  46. Ray T., Dutta I., Saha P., Das S., Roy S.C., Genetic stability of three economically important micropropagated banana (Musca spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers, Plant Cell Tiss. Organ Cult., 2006, 85, 11–21

    Article  CAS  Google Scholar 

  47. Arif M., Zaidi N.W., Singh Y.P., A comparative analysis of ISSR and RAPD markers for study of genetic diversity in shiham (Dalbergia sissoo), Plant Mol. Biol. Rep., 2009, 27, 488–495

    Article  CAS  Google Scholar 

  48. Hou Y.C., Yan Z.H., Wei Y.M., Zheng Y.L., Genetic diversity in barley from west China based on RAPD and ISSR analysis, Barley Genet. Newsl., 2005, 35, 9–22

    Google Scholar 

  49. McCoy T.J., Echt C.S., Potential of trispecies bridge crosses and random amplified polymorphic DNA markers for introgression of Medicago daghestanica and M. pironae germplasm into alfalfa (M. sativa), Genome, 1993, 36, 594–601

    Article  PubMed  CAS  Google Scholar 

  50. Xavier J.R., Kumar J., Srivastava R.B., Characterization of genetic structure of alfalfa (Medicago sp.) from trans-Himalaya using RAPD and ISSR markers, Afr. J. Biotech., 2011, 10, 8176–8187

    CAS  Google Scholar 

  51. Noeparvar S., Valizadeh M., Monirifar H., Haghighi A.R., Darbani B., Genetic diversity among and within alfalfa populations native to Azerbaijan based on RAPD analysis, J. Biol. Res.-Thessalon, 2008, 10, 159–169

    CAS  Google Scholar 

  52. Stancevičius A., Medicago sativa, In: Natkevičaitė-Ivanauskienė M. (Ed.), Flora of the Lithuanian SSR vol. 4 [Lietuvos TSR flora 4 t.], Valstybinė politinės ir mokslinės literatūros leidykla, Vilnius, 1971, (in Lithuanian)

    Google Scholar 

  53. Maron J.L, Vila M., Bommarco R., Elmendorf S., Beardsley P., Rapid evolution of an invasive plant, Ecol. Monogr., 2004, 74, 261–280

    Article  Google Scholar 

  54. Chun Y.J., Nason J.D., Moloney K.A., Comparison of quantitative and molecular genetic variation of native vs. invasive populations of purple loosestrife (Lythrum salicaria L., Lythraceae), Mol. Ecol., 2009, 18, 3020–3035

    Article  PubMed  CAS  Google Scholar 

  55. Keivani M., Ramezanpour S.S., Soltanloo H., Choukan R., Naghavi M., Ranjbar M., Genetic diversity assessment of alfalfa (Medicago sativa L.) populations using AFLP markers, Aust. J. Crop Sci., 2010, 4, 491–497

    CAS  Google Scholar 

  56. Rufener Al Mazyad P., Ammann K., Biogeographical assay and natural gene flow. In: Ammann K., Jecot Y., Simonsen V., Kjellsson G. (Eds.), Methods for risk assessment of transgenic plants. III. Ecological risks and prospects of transgenic plants, where do we go from here? A dialogue between biotech industry and science, Birkhäuser Verlag, Basel, 1999

    Google Scholar 

  57. Kaljund K., Jaaska V., No loss of genetic diversity in small and isolated populations of Medicago sativa subsp. falcata, Biochem. Syst. Ecol., 2010, 38, 510–520

    Article  CAS  Google Scholar 

  58. Lapiņa L., Grauda D., Rashal I., Characterization of Latvian alfalfa Medicago sativa genetic resources, Acta Biol. Univ. Daugavp., 2011, 11, 134–140

    Google Scholar 

  59. Vyšniauskienė R., Rančelienė V., Žvingila D., Patamsytė J., Genetic diversity of invasive alien species Lupinus polyphyllus populations in Lithuania, Žemdirbystė=Agriculture, 2011, 98, 383–390

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Vyšniauskienė.

About this article

Cite this article

Vyšniauskienė, R., Rančelienė, V., Patamsytė, J. et al. High genetic differentiation among wild populations of alien Medicago sativa in Lithuania. cent.eur.j.biol. 8, 480–491 (2013). https://doi.org/10.2478/s11535-013-0159-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0159-4

Keywords

Navigation