Skip to main content
Log in

Induction of hairy roots in Arnica montana L. by Agrobacterium rhizogenes

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The induction of hairy roots in Arnica montana L. by Agrobacterium rhizogenes mediated system was established. The frequency of genetic transformation varied from 4.8 to 12% depended on method of infection. The cefotaxime at concentration of 200 mg/l proved to suppress effectively the growth of A. rhizogenes after co-cultivation. Among the three tested nutrient media: Murashige and Skoog (MS), Gamborg’s (B5) and Schenk and Hildebrandt (SH), MS medium was superior for growth and high biomass production of transformed roots compared to other culture media. After culturing for 40 days the fresh weight of clone T4 increased 7.6 fold over the non-transformed roots. The transfer of rol A, rol B and rol C genes into Arnica genome was confirmed by PCR analysis. Established genetic transformation techniques in A. montana efficiently provided and generated a large number of transformed roots — an excellent system for studying gene function and could be used for the production of secondary metabolites synthesized in roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog medium

B5:

Gamborg’s medium

SH:

Schenk and Hildebrandt medium

PCR:

polymerase chain reaction

MP:

micropropagated plants

RP:

regenerated plants from callus culture

References

  1. Willuhn G., Arnica flowers: pharmacology, toxicology and analysis of the sesquiterpene lactones-their main active substances, In: Lawson L.D., Bauer R. (Ed.): Phytomedicines of Europe, ACS Symp. Ser 691 Am. Chem. Soc., 1998, 691, 118–132

    Article  CAS  Google Scholar 

  2. Nichterlein K., Arnica montana (Mountain Arnica): in vitro culture and the production of sesquiterpene lactones and other metabolites, In: Bajaj Y.P.S (Ed.): Biotechnology in Agriculture and Forestry, Medicinal and Aromatic plants VIII, Springer-Verlag Berlin Heidelberg, 1995

    Google Scholar 

  3. Falniowski A., Bazos I., Hodálová I., Lansdown R., Petrova A., Arnica montana. In: IUCN 2012. IUCN Red List of Threatened Species, Version 2012.2

  4. Lange D., Europe’s medicinal and aromatic plants: their use, trade and conservation, TRAFFIC International, Cambridge, 1998

    Google Scholar 

  5. Uozumi N., Large-scale production of hairy root, Adv. Biochem. Eng. Biotechnol., 2004, 91, 75–103

    PubMed  CAS  Google Scholar 

  6. Sung L.S., Huang S.Y., Lateral root bridging as a strategy to enhance L-DOPA production in Stizolobium hassjoo hairy root cultures by using a mesh hindrance mist trickling bioreactor. Biotechnol. Bioeng., 2006, 94, 441–447

    Article  PubMed  CAS  Google Scholar 

  7. Georgiev M., Pavlov A.I., Bley T., Hairy root type plant in vitro systems as sources of bioactive substances, Appl. Microbiol. Biotechnol., 2007, 74, 1175–1185

    Article  PubMed  CAS  Google Scholar 

  8. Hughes E.H., Hong S.B., Shanks J.V., San K.Y., Gibson S.I., Characterization of an inducible promoter system in Catharanthus roseus hairy roots, Biotechnol. Prog., 2002, 18, 1183–1186

    Article  PubMed  CAS  Google Scholar 

  9. Choi P.S., Kim Y.D., Choi K.M., Chung H.J., Choi D.W., Liu J.R., Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus, Plant Cell Rep., 2004, 22, 828–831

    Article  PubMed  CAS  Google Scholar 

  10. Sunil Kumar G.B., Ganapathi T.R., Srinivas L., Revathi C.J., Bapat V.A., Expression of hepatitis B surface antigen in potato hairy roots, Plant Sci., 2006, 170, 918–925

    Article  Google Scholar 

  11. Weremczuk-Jeżyna I., Kisiel W., Wysokińska H., Thymol derivatives from hairy roots of Arnica montana, Plant Cell Rep., 2006, 25, 993–996

    Article  PubMed  Google Scholar 

  12. Weremczuk-Jezyna I., Kalemba D., Wysokinska H., Constituents of the essential oil from hairy roots and plant roots of Arnica montana, J. Essent. Oil Res., 2011, 23, 91–97

    Article  CAS  Google Scholar 

  13. Murashige T., Skoog F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, 15, 473–497

    Article  CAS  Google Scholar 

  14. Vervliet G., Holsters M., Teuchy, H., Van Montagu M., Schell J., Characterisation of different plaqueforming and defective temperate phages in Agrobacterium strains, J. Gen. Virol., 1975, 26, 33–48

    Article  PubMed  CAS  Google Scholar 

  15. Gamborg O.L., Miller R.A., Ojima K., Nutrient requirements of suspension cultures of soybean root cells, Exp. Cell Res, 1968, 50, 148–151

    Article  Google Scholar 

  16. Schenk R.U., Hildebrandt A., Medium and techniques for induction and growth of monocotyledonous and dicotyledonousplant cell cultures, Can. J. Bot., 1972, 50, 199–204

    Article  CAS  Google Scholar 

  17. Giovannini A., Tissue culture, cell culture and genetic transformation by wild type Agrobacterium rhizogenes in Mediterranean Helichrysum, In: Jaime A., Teixeira da Silva (Ed.), Floriculture, Ornamental and Plant Biotechnology Advances and Tropical Issues II, Global Science Books, 2006

    Google Scholar 

  18. Zhang L., Yang B., Lu B.B., Kai G.Y., Wang Z.N., Xia Y.Y., et al., Tropane alkaloids production in transgenic Hyoscyamus niger hairy root cultures over-expressing Putrescine N-methyltransferase is methyl jasmonate-dependent, Planta, 2007, 225, 887–896

    Article  PubMed  CAS  Google Scholar 

  19. Shi H.P., Long Y.Y., Sun T.S., Tsang P.K.E., Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon Cablin, Plant Cell Tiss. Org., 2011, 107, 251–260

    Article  CAS  Google Scholar 

  20. Zebarjadi R., Najafi Sh., Ghasempour H.R., Motamedi J., Establishment of a practical tissue culture for producing hairy roots of Valeriana officinalis L. via Agrobacterium rhizogenes, J. Med. Plants Res., 2011, 5, 4984–4992

    CAS  Google Scholar 

  21. Fukuyama N., Shibuya M., Orihara Y., Antimicrobial Polyacetylenes from Panax ginseng Hairy Root Culture, Chem. Pharm. Bull., 2012, 60, 377–380

    Article  PubMed  CAS  Google Scholar 

  22. Christensen B., Muller R., The Use of Agrobacterium rhizogenes and its rol genes for quality Improvement in Ornamentals, Europ. J. Hort. Sci., 2009, 74, 275–287

    CAS  Google Scholar 

  23. Sevón N., Oksman-Caldentey K.M., Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids, Planta Med., 2002, 68, 859–68

    Article  PubMed  Google Scholar 

  24. Bensaddek L., Villarreal M. L., Fliniaux M., Induction and growth of hairy roots for the production of medicinal compounds, Electron J Integr Biosci, 2008, 3, 2–9

    Google Scholar 

  25. Puonti-Kaerlas J., Li H.Q., Sautter C., Potrykus I., Production of tansgenic cassava (Manihot esculaenta Crantz) via organogenesis and Agrobacterium-mediated transformation. Afr. J. Root Tuber Crops, 1997, 2, 181–186

    Google Scholar 

  26. Siritunga D., Arias-Garzon D., White W., Sayre R., Over-expression of hydroxynitrile lyase in transgenic cassava (Manihot esculaenta, Crantz) roots accelerates embryogenesis, Plant Biotechnol J, 2004, 2, 37–43

    Article  PubMed  CAS  Google Scholar 

  27. Sarker R.H., Biswas A., In vitro plantlet regeneration and Agrobacterium-mediated genetic transformation of wheat (Triticum aestivum L.), Plant Tissue Culture, 2002, 12, 155–165

    Google Scholar 

  28. Mezzetti B., Pandolfini T., Navacchi O., Landi L., Genetic transformation of Vitis vinifera via organogenesis, BMC Biotechnol, 2002, 2, 18

    Article  PubMed  Google Scholar 

  29. Park S.U., Facchini P.J., Agrobacterium rhizogenes mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures, J Exp Bot, 2000, 347, 1005–1016

    Article  Google Scholar 

  30. Kumar V., Jones B., Davey M.R., Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea, Plant Cell Rep, 1991, 10, 135–138

    CAS  Google Scholar 

  31. Tiwari R.K., Trivedi M., Guang Zh.Ch., Guo G.Q., Zheng G.Ch., Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures, Plant Cell Rep., 2007, 26, 199–210

    Article  PubMed  CAS  Google Scholar 

  32. Rahnama H., Hasanloo T., Shams M.R., Sepehrifar R., Silymarin production by hairy root culture of Silybium marianum (L.) Gaertn, Iranian J. Biotechnol, 2008, 6, 113–118

    CAS  Google Scholar 

  33. Mannan A., Shaheen N., Arshad W., Qureshi R.A., Zia M., Mirza B., Hairy roots induction and artemisinin analysis in Artemisia dubia and Artemisia indica, Afr. J. Biotechnol., 2008, 7, 3288–3292

    CAS  Google Scholar 

  34. Tao J., Le L., Genetic transformation of Torenia fournieri L. mediated by Agrobacterium rhizogenes, S. Afr. J. Bot., 2006, 72, 211–216

    Article  Google Scholar 

  35. Su J., Duan R.Q., Hu C.Q., Li Y.P., Wang F., Regeneration and Agrobacterium mediated transformation for Chinese cabbage, Fujian J. of Agricult. Sci, 2002, 17, 241–243

    Google Scholar 

  36. Ahlawat S., Saxena P., Ram M., Alam P., Nafis T., Mohd A., Abdin M.Z., Influence of Agrobacterium rhizogenes on induction of hairy roots for enhanced production of artemisinin in Artemisia annua L. plants, Afr. J. Biotechnol., 2012, 11, 8684–8691

    CAS  Google Scholar 

  37. Trypsteen M., Van Lijsebettens M., Van Severn R., Van Montagu M, Agrobacterium rhizogenesmediated transformation of Echinacea purpurea, Plant Cell Rep., 1991, 10, 85–89

    Article  CAS  Google Scholar 

  38. Malarz J., Stojakowska A., Kisiel W., Sesquiterpene Lactones in a Hairy Root Culture of Cichorium intybus, Z. Naturforsch., 2002, 57, 994–997

    CAS  Google Scholar 

  39. Lee M.H., Yoon E.S., Jeong J.H., Choi Y.E., Agrobacterium rhizogenes-mediated transformation of Taraxacum platycarpum and changes of morphological characters, Plant Cell Rep, 2004, 22, 822–827

    Article  PubMed  CAS  Google Scholar 

  40. Batra J., Dutta A., Singh D., Kumar S., Sen J., Growth and terpenoid indole alkal production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration, Plant Cell Rep, 2004, 23, 148–154

    Article  PubMed  CAS  Google Scholar 

  41. Mirjalili H.M., Fakhr-Tabatabaei S.M., Bonfill M., Alizadeh H., Cusido R.M., Ghassempour A., et al., Morphology and withanolide production of Withania coagulans hairy root cultures, Eng. Life Sci., 2009, 9, 197–204

    Article  CAS  Google Scholar 

  42. Samadi A., Carapetian J., Heidari R., Jafari M., Hassanzadeh Gorttapeh A., Hairy Root Induction in Linum mucronatum ssp. mucronatum, an Anti-Tumor Lignans Producing Plant, Not. Bot. Horti. Agrobo, 2012, 40, 125–131

    CAS  Google Scholar 

  43. Grant J.E., Dommisse E.M., Christey M.C., Conner A.J., Gene transfer to plants using Agrobacterium, In: Murray DR (Ed.) Advanced methods in plant breeding and biotechnology, CAB International, Wallingford, 1991

    Google Scholar 

  44. Bandyopadhyay M., Jha S., Tepfer D., Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera, Plant Cell Rep, 2007, 26, 599–609

    Article  PubMed  CAS  Google Scholar 

  45. Robins R.J., Bent F.G., Rhodes M.J.C., Studies on the biosynthesis of tropane alkaloids by Datura stramonium L. Transformed root cultures. Part 3: the relationship between morphological integrity and alkaloid biosynthesis, Planta, 1991, 185, 385–390

    Article  CAS  Google Scholar 

  46. Jung K.H., Kawah S.S., Choi C.Y., Liu J.R., An interchangable system of transformed root and cell suspension cultures of Catharanthus roseus for indole alkaloid production, Plant Cell Rep, 1995, 15, 51–54

    Article  CAS  Google Scholar 

  47. Palazon J., Altabella T., Cusido R., Ribo M., Pinol M.T., Growth and tropane alkaloid production in Agrobacterium transformed roots and derived callus in Datura, Biol Plant, 1995, 37, 61–168

    Article  Google Scholar 

  48. Guivarc’h A., Boccara M., Prouteau M., Chriqui D., Instability of phenotype and gene expression in long-term culture of carrot hairy root clones, Plant Cell Rep, 1999, 19, 43–50

    Article  Google Scholar 

  49. Kim Y.J., Wyslouzili B.E., Weathers P.J., Invited review: Secondary metabolism of hairy root cultures in bioreactors, In Vitro. Cell. Dev. Biol. Plant., 2002, 38, 1–10

    Article  CAS  Google Scholar 

  50. Sivanesan I., Jeong B.R., Induction and establishment of adventitious and hairy root cultures of Plumbago zeylanica L., Afr. J. Biotechnol., 2009, 8, 5294–5300

    CAS  Google Scholar 

  51. Park S.U., Lee S.Y., Anthraquinone production by hairy root culture of Rubia akane Nakai: Influence of media and auxin treatment, Sci. Res. Essay, 2009, 4, 690–693

    Google Scholar 

  52. Xu H., Park J.H., Kim Y.K., Park N.II., Lee S.Y., Park S.U., Optimization of growth and pyranocoumarins production in hairy root culture of Angelica gigas Nakai, J. Med. Plants Res, 2009, 3, 978–981

    CAS  Google Scholar 

  53. Kim Y.S., Li X., Park W.T., Uddin M.R., Park N.I., Kim Y.B., et al., Influence of media and auxins on growth and falvone production in hairy root cultures of baikal skullcap, Scutellaria baicalensis, POJ, 2012, 5, 24–27

    Article  CAS  Google Scholar 

  54. Runo S., Macharia S., Alakonya A., Machuka J., Sinha N., Scholes J., Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions, Plant Methods. 2012, 8, 1–20

    Article  Google Scholar 

  55. Shen W. H., Petit A., Guern J., Tempe J., Hairy roots are more sensitive to auxin than normal roots, Proc. Natl. Acad. Sci. USA, 1988, 85, 3417–3421

    Article  PubMed  CAS  Google Scholar 

  56. Milosevic S., Subotic A., Cingel A., Jevremovic S., Efficient genetic transformation of Impatients hawkerii Bull. (Balsamiaceae) using Agrobacterium rhizogenes, Arch. Biol. Sci., 2009, 61, 467–474

    Article  Google Scholar 

  57. Scorza R., Zimmerman T.W., Cordts J.M., Footen K.J., Horticultural character istics of transgenic tobacco expressing the rolC gene from Agrobacterium rhizogenes, J. Am. Soc. Hort. Sci., 1998, 119, 1091–1098

    Google Scholar 

  58. Welander M, Zhu M., Rol genes: Molecular biology, physiology, morphology, Breed. Rev., 2006, 26, 79–103

    CAS  Google Scholar 

  59. Schmulling T., Schell J., Spena A., Promoters of the rolA, B and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants, Plant Cell, 1989, 1, 665–670

    PubMed  CAS  Google Scholar 

  60. Mishra B.N., Ranjan R., Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites, Biotechnol Appl Biochem., 2008, 49, 1–10

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariya Petrova.

About this article

Cite this article

Petrova, M., Zayova, E. & Vlahova, M. Induction of hairy roots in Arnica montana L. by Agrobacterium rhizogenes . cent.eur.j.biol. 8, 470–479 (2013). https://doi.org/10.2478/s11535-013-0157-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0157-6

Keywords

Navigation