Skip to main content
Log in

The genetic structure of the Lithuanian wolf population

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Lithuanian wolves form part of the larger Baltic population, the distribution of which is continuous across the region. In this paper, we evaluate the genetic diversity of the Lithuanian wolf population using mitochondrial DNA analysis and 29 autosomal microsatellite loci. Analysis of the mtDNA control region (647 bp) revealed 5 haplotypes distributed among 29 individuals and high haplotype diversity (0.658). Two haplotypes were distributed across the country, whilst the others were restricted to eastern Lithuania. Analysis of microsatellites revealed high heterozygosity (HE=0.709) and no evidence for a recent bottleneck. Using detection of first generation migrants, four individuals appeared to assign better with populations genetically differentiated from those resident in Lithuania. These immigrants were males carrying rare mitochondrial haplotypes and were encountered in the eastern part of the country, this indicates that Lithuania is subject to immigration from differentiated populations. Additionally, we did not detect any signs of recent hybridisation with dogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salvatori V., Linnell J., Report on the conservation status and threats for wolves (Canis lupus) in Europe, Council of Europe T-PVS/Inf, 2005, 16, 1–24

    Google Scholar 

  2. Jedrzejewski W., Jedrzejewska B., Andersone-Lilley Z., Balciauskas L., Mannil P., Ozolins J., et al., Synthesizing wolf ecology and management in Eastern Europe: similarities and contrasts with North America, In: Musiani M., Boitani L., Paquet P.C. (Eds.), The world of wolves: new perspectives on ecology, behaviour and management, University of Calgary Press, Calgary, 2010

    Google Scholar 

  3. Randi E., Genetics and conservation of wolves Canis lupus in Europe, Mamm. Rev., 2011, 41, 99–111

    Article  Google Scholar 

  4. Carmichael L., Nagy J.A., Larter N.C., Strobeck C., Prey specialization may influence patterns of gene flow in wolves ot the Canadian Northwest, Mol. Ecol., 2001, 10, 2787–2798

    PubMed  CAS  Google Scholar 

  5. Musiani M., Leonard J.A., Cluff H.D., Gates C.C., Mariani S., Paquet P.C., et al., Differentiation of tundra/taiga and boreal coniferous forest wolves: genetic, coat colour and association with migratory caribou, Mol. Ecol., 2007, 16, 4149–4170

    Article  PubMed  CAS  Google Scholar 

  6. Frankham R., Ballon J.D., Briscoe D.A., Introduction to conservation genetics, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 2009

    Google Scholar 

  7. Hedrick P., Application of molecular genetics to conservation: new issues and examples, In: Beissinger S.R., McCullough D.R. (Eds.), Population viability analysis, University of Chicago Press, Chicago, 2002

    Google Scholar 

  8. Lucchini V., Galov A., Randi E., Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in Italian Appennines, Mol. Ecol., 2004, 13, 523–536

    Article  PubMed  CAS  Google Scholar 

  9. Jędrzejewski W., Branicki W., Veit C., Međugorac I., Pilot M., Bunevich A.N., et al., Genetic diversity and relatedness within packs in an intensively hunted population of wolves Canis lupus, Acta Theriol., 2005, 50, 3–22

    Article  Google Scholar 

  10. Sastre N., Vilà C., Salinas M., Bologov V.V., Urios V., Sánchez A., et al., Signatures of demographic bottlenecks in European wolf populations, Conserv. Genet., 2011, 12, 701–712

    Article  Google Scholar 

  11. Andersone Ž., Lucchini V., Randi E., Ozoliņš J., Hybridization between wolves and dogs in Latvia as documented using mitochondrial and microsatellite DNA markers, Mamm. Biol., 2002, 67, 79–90

    Google Scholar 

  12. Hinrikson M., Männil P., Ozoliņš J., Krzywinski A., Saarma U., Bucking the trend in wolf-dog hybridization: first evidence from Europe of hybridization between female dogs and male wolves, PloS One, 2012, 7, e46465, doi: 10.1371/ journal.pone.0046465

    Article  Google Scholar 

  13. Sambrook J., Fritsch E.F., Maniatis T., Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989

    Google Scholar 

  14. Parra D., Méndez J., Cañón J., Dunner S., Genetic differentiation in pointing dog breeds inferred from microsatellites and mitochondrial DNA sequence, Anim. Genet., 2008, 39, 1–7

    Article  PubMed  CAS  Google Scholar 

  15. Hall T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, 41, 95–98

    CAS  Google Scholar 

  16. Librado P., Rozas J., DnaSP v5: A software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, 25, 1451–1452

    Article  PubMed  CAS  Google Scholar 

  17. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, 28, 2731–2739

    Article  PubMed  CAS  Google Scholar 

  18. Vilà C., Savolainen P., Maldonado J.E., Amorim I.R., Rice J.E., Honeycutt R.L., et al., Multiple and ancient origins of the domestic dog, Science, 1997, 276, 1687–1689

    Article  PubMed  Google Scholar 

  19. Björnerfeldt S., Webster M.T., Vilà C., Relaxation of selective constraint on dog mitochondrial DNA following domestication, Genome Res., 2006, 16, 990–994

    Article  PubMed  Google Scholar 

  20. Aggarwal R.K., Kivisild T., Ramadevi J., Singh L., Mitochondrial DNA coding region sequences support the phylogenetic distinction of two Indian wolf species, J. Zool. Suppl. Evol. Res., 2007, 45, 163–172

    Article  Google Scholar 

  21. Pilot M., Branicki W., Jędrzejewski W., Goszczyński J., Jędrzejewska B., Dykyy I., et al., Phylogeographic history of grey wolves in Europe, BMC Evol. Biol., 2010, 10, 104, doi:10.1186/1471-2148-10-104

    Article  PubMed  Google Scholar 

  22. Bekaert B., Larmuseau M.H.D., Vanhove M.P.M., Opdekamp A., Decorte R., Automated DNA extraction of single dog hairs without roots for mitochondrial DNA analysis, Forensic Sci. Int. Genet., 2012, 6, 277–281

    Article  PubMed  CAS  Google Scholar 

  23. Huelsenbeck J.P., Ronquist F., MRBAYES: Bayesian inference of phylogeny, Bioinformatics, 2001, 17, 817–818

    Article  Google Scholar 

  24. Posada D., jModelTest: Phylogenetic Model Averaging, Mol. Biol. Evol., 2008, 25, 1253–1256

    Article  PubMed  CAS  Google Scholar 

  25. Holmes N.G., Mellersh C.S., Humphreys S.J., Binns M.M., Holliman A., Curtis R., et al., Isolation and characterization of microsatellites from the canine genome, Anim. Genet., 1993, 24, 289–292

    Article  PubMed  CAS  Google Scholar 

  26. Holmes N.G., Strange N.J., Binns M.M., Mellersh C.S., Sampson J., Three polymorphic canine microsatellites, Anim. Genet., 1994, 25, 200

    Article  PubMed  CAS  Google Scholar 

  27. Holmes N.G., Dickens H.F., Parker H.L., Brims M.M., Mellersh C.S., Sampson J., Eighteen canine microsatellites, Anim. Genet., 1995, 26, 132–133

    Article  PubMed  CAS  Google Scholar 

  28. Ostrander E.A., Sprague G.F., Rine J., Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog, Genomics, 1993, 16, 207–213

    Article  PubMed  CAS  Google Scholar 

  29. Francisco L.V., Langston A.A., Mellersh C.S., Neal C.L., Ostrander E.A., A class of highly polymorphic tetranucleotide repeats for canine genetic mapping, Mamm. Genome, 1996, 7, 359–362

    Article  PubMed  CAS  Google Scholar 

  30. Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P., MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data, Mol. Ecol. Notes, 2004, 4, 535–538

    Article  Google Scholar 

  31. Excoffier L., Lischer H.E.L., Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, 10, 564–567

    Article  PubMed  Google Scholar 

  32. Goudet J., FSTAT (Version 1.2): A computer program to calculate F-statistics, J. Hered., 1995, 86, 485–486

    Google Scholar 

  33. Raymond M., Rousset F., GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism, J. Hered., 1995, 86, 248–249

    Google Scholar 

  34. Piry S., Luikart G., Cornuet J.M., BOTTLENECK: a computer program for detecting recent reductions in effective size using allele frequency data, J. Hered., 1999, 90, 502–503

    Article  Google Scholar 

  35. Cornuet J.M., Luikart G., Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data, Genetics, 1996, 144, 2001–2014

    PubMed  CAS  Google Scholar 

  36. Jost L., GST and its relatives do not measure differentiation, Mol. Ecol., 2008, 17, 4015–4026

    Article  PubMed  Google Scholar 

  37. Gerlach G., Jueterbock A., Kraemer P., Depperman J., Harmand P., Calculations of population differentiation based on GST and D: forget GST but not all of statistics!, Mol. Ecol., 2010, 19, 3845–3852

    Article  PubMed  Google Scholar 

  38. Weir B.S., Cockerham C.C., Estimating F-statistics for the analysis of population structure, Evolution, 1984, 38, 1358–1370

    Article  Google Scholar 

  39. Piry S., Alapetite A., Cornuet J.M., Paetkau D., Baudouin L., Estoup A., GeneClass2: A Software for Genetic Assignment and First-Generation Migrant Detection, J. Hered., 2004, 95, 536–539

    Article  PubMed  CAS  Google Scholar 

  40. Paetkau D., Slade R., Burden M., Estoup A., Direct, real-time estimation of migration rate using assignment methods: a simulation-based exploration of accuracy and power, Mol. Ecol., 2004, 13, 55–65

    Article  PubMed  CAS  Google Scholar 

  41. Rannala B., Mountain J.L., Detecting immigration by using multilocus genotypes, Proc. Natl. Acad. Sci. USA, 1997, 94, 9197–9201

    Article  PubMed  CAS  Google Scholar 

  42. Pritchard J.K., Stephens M., Donnelly P.J., Inference of population structure using multilocus genotype data, Genet., 2000, 155, 945–959

    CAS  Google Scholar 

  43. Anderson E.C., Thompson E.A., A model-based method for identifying species hybrids using multilocus genetic data, Genetics, 2002, 160, 1217–1229

    PubMed  CAS  Google Scholar 

  44. Nielsen E.E., Bach A.L., Kotlicki P., Hybridlab (version 1.0): a program for generating simulated hybrids from population samples, Mol. Ecol. Notes, 2006, 6, 971–973

    Article  Google Scholar 

  45. Godinho R., Llaneza L., Blanco J.C., Lopes S., Álvares F., García E.J., et al., Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian Peninsula, Mol. Ecol., 2011, 20, 5154–5166

    Article  PubMed  Google Scholar 

  46. Pilot M., Jędrzejewski W., Branicki W., Sidorovich V.E., Jędrzejewska B., Stachura K., et al., Ecological factors influence population genetic structure of European grey wolves, Mol. Ecol., 2006, 15, 4533–4553

    Article  PubMed  CAS  Google Scholar 

  47. Randi E., Lucchini V., Christensen M.F., Mucci N., Funk S.M., Dolf G., et al., Mitochondrial DNA variability in Italian and East-European wolves: detecting the consequences of small population size and hybridization, Conserv. Biol., 2000, 14, 464–473

    Article  Google Scholar 

  48. Valière N., Fumagalli L., Gielly L., Miquel C., Lequette B., Poulle M.-L., et al., Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years, Anim. Conserv., 2003, 6, 83–92

    Article  Google Scholar 

  49. Gomerčić T., Sindičić M., Galov A., Arbanasić H., Kusak J., Kocijan I., et al., High genetic variability of the grey wolf (Canis lupus L.) population from Croatia as revealed by mitochondrial DNA control region sequences, Zool. Stud., 2010, 49, 816–823

    Google Scholar 

  50. Wayne R.K., Ostrander E.A., Lessons learned from the dog genome, Trends Genet., 2007, 23, 557–567

    Article  PubMed  CAS  Google Scholar 

  51. Aspi J., Roininen E., Kiiskilä J., Ruokonen M., Kojola I., Bljudnik L., et al., Genetic structure of the northwestern Russian wolf populations and gene flow between Russia and Finland, Conserv. Genet., 2009, 10, 815–826

    Article  CAS  Google Scholar 

  52. Balčiauskas L., Wolf numbers and distribution in Lithuania and problems of species conservation, Ann. Zool. Fenn., 2008, 45, 329–334

    Article  Google Scholar 

  53. Fabri E., Miquel C., Lucchini V., Santini A., Caniglia R., Duchamp C., et al., From Apennines to the Alps: colonization genetics of the naturally expanding Italian wolf (Canis lupus) population, Mol. Ecol., 2007, 16, 1661–1671

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laima Baltrūnaitė.

About this article

Cite this article

Baltrūnaitė, L., Balčiauskas, L. & Åkesson, M. The genetic structure of the Lithuanian wolf population. cent.eur.j.biol. 8, 440–447 (2013). https://doi.org/10.2478/s11535-013-0154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0154-9

Keywords

Navigation