Skip to main content
Log in

Protein synthesis in crustaceans: a review focused on feeding and nutrition

  • Review Article
  • Published:
Central European Journal of Biology

Abstract

This review aimed to place crustacean research on in vivo protein synthesis into a broader context, assess its potential for providing further insights into crustacean nutrition and physiology, and recommend future directions relevant to crustacean aquaculture. In crustaceans the flooding dose measurement of protein synthesis is the only method that has been used, it is relatively complex, time consuming and uses radioactive labels. Protein synthesis provides a subtle approach to assessing imbalances and deficiencies in dietary amino acid and energy. In addition, the calculation of protein synthesis retention efficiency (SRE) is recommended in order to understand and optimize parameters such as feeding regime and diet composition. For prawns, SRE was highest at optimum dietary protein content and quality. Similarly the most efficient feeding regimes in juvenile lobsters were demonstrated by the highest efficiency of retaining synthesized protein. Understanding how various abiotic and biotic factors influence protein synthesis has great potential for improving different aspects of crustacean aquaculture but very few studies have done this; better knowledge of how abiotic and biotic factors affect crustacean protein synthesis will contribute to optimising growth of crustaceans in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waterlow J.C., Protein Turnover, CABI Wallingford UK, 2006

    Google Scholar 

  2. Carter C.G., Houlihan D.F., Protein synthesis, In: Wright P.A., Anderson P.M. (Eds.), Nitrogen Excretion, Fish Physiology Vol. 20, Academic Press San Diego, 2001

    Google Scholar 

  3. Millward D.J., The nutritional regulation of muscle growth and protein turnover, Aquaculture, 1989, 79, 1–28

    Article  CAS  Google Scholar 

  4. Fraser K.P.P., Rogers A.D., Protein metabolism in marine animals: The underlying mechanism of growth, Ad. Mar. Biol., 2007, 52, 267–362

    Article  Google Scholar 

  5. Houlihan D.F., Carter C.G., McCarthy I.D., Protein turnover in animals, In: Wright P.J., Walsh P.A. (Eds.), Nitrogen and Excretion, CRC Press Boca Raton, 1995

    Google Scholar 

  6. Carter C.G., Houlihan D.F., Brechin J., McCarthy I.D., The relationships between protein intake and protein accretion, synthesis and retention efficiency for individual grass carp, Ctenopharyngodon idella (Valenciennes), Can. J. Zool, 1993, 71, 392–400

    Article  CAS  Google Scholar 

  7. Houlihan D.F., Hall S.J., Gray C., Noble B.S., Growth rates and protein turnover in Atlantic cod, Gadus morhua., Can. J. Fish. Aquat. Sci., 1988, 45, 951–964

    Article  Google Scholar 

  8. Millward D.J., Rivers J., The nutritional role of indispensible amino acids and the metabolic basis for their requirements, Euro. J. Clin. Nutr, 1988, 42, 367–393

    CAS  Google Scholar 

  9. Fraser K.P.P., Lyndon A.R., Houlihan D.F., Protein synthesis and growth in juvenile Atlantic halibut, Hippoglossus hippoglossus (L.): application of 15N stable isotope tracer, Aquacult. Res., 1998, 29, 289–298

    Google Scholar 

  10. McCarthy I.D., Houlihan D.F., Carter C.G., Moutou K., Variation in individual food consumption rates of fish and its implications for the study of fish nutrition and physiology, P. Nutr. Soc., 1993, 52, 411–420

    Article  Google Scholar 

  11. Hawkins A.J.S., Protein turnover: a functional appraisal, Func. Ecol., 1991, 5, 222–233

    Article  Google Scholar 

  12. Houlihan D.F., Protein turnover in ectotherms and its relationships to energetics, Adv. Comp. Env. Physiol., 1991, 7, 1–43

    Article  CAS  Google Scholar 

  13. Houlihan D.F., Carter C.G., McCarthy I.D., Protein synthesis in fish., In: Hochachka P., Mommsen P. (Eds.), Biochemistry and Molecular Biology of Fishes, volume 4., Elsevier Science Amsterdam, 1995

    Google Scholar 

  14. McCarthy I.D., Houlihan D.F., The effect of water temperature on protein metabolism in fish: the possible consequences for wild Atlantic salmon (Salmo salar L.) stocks in Europe as a result of global warming., In: Wood C.M., McDonald D.G. (Eds.), Global Warming: Implications for Freshwater and Marine Fish, Cambridge University Press, Cambridge, 1996

    Google Scholar 

  15. Whiteley N.M., Robertson R.F., Meagor J., El Haj A.J., Taylor E.W., Protein synthesis and specific dynamic action in crustaceans: effects of temperature, Comp. Biochem. Physiol. A, 2001, 128, 595–606

    CAS  Google Scholar 

  16. El Haj A.J., Houlihan D.F., In vitro and in vivo protein-synthesis rates in a crustacean muscle during the molt cycle, J. Exp. Biol., 1987, 127, 413–426

    Google Scholar 

  17. Mente E., Houlihan D.F., Smith K., Growth, feeding frequency, protein turnover, and amino acid metabolism in European lobster Homarus gammarus L., J. Exp. Zool., 2001, 289, 419–432

    Article  PubMed  CAS  Google Scholar 

  18. Gorell T.A., Gilbert L.I., Stimulation of protein and RNA synthesis in crayfish hepatopancreas by crustecdysone, Gen. Comp. Endo., 1969, 13, 308–310

    Article  CAS  Google Scholar 

  19. Gorell T.A., Gilbert L.I., Protein and RNA synthesis in premolt crayfish, Orconectes virilis, Zeitschrift Fur Vergleichende Physiologie, 1971, 73, 345–356

    Article  Google Scholar 

  20. Horst M.N., Association between chitin synthesis and protein-synthesis in the shrimp Penaeus vannamei, J. Crus. Biol., 1989, 9, 257–265

    Article  Google Scholar 

  21. Horst M.N., Concurrent protein-synthesis is required for in vivo chitin synthesis in postmolt blue crabs, J. Exp. Zool., 1990, 256, 242–254

    Article  PubMed  CAS  Google Scholar 

  22. Paulson C.R., Skinner D.M., Effects of 20-hydroxyecdysone on protein-synthesis in tissues of the land crab Gecarcinus lateralis, J. Exp. Zool., 1991, 257, 70–79

    Article  CAS  Google Scholar 

  23. Garlick P.J., McNurlan M.A., Preedy V.R., A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of 3H phenylalanine, Biochem J, 1980, 192, 719–723

    PubMed  CAS  Google Scholar 

  24. El Haj A.J., Clarke S.R., Harrison P., Chang E.S., In vivo muscle protein synthesis rates in the American lobster Homarus americanus during the moult cycle and in response to 20-hydroxyecdysone, J. Exp. Biol., 1996, 199, 579–585

    PubMed  Google Scholar 

  25. Houlihan D.F., Waring C.P., Mathers E., Gray C., Protein-synthesis and oxygen-consumption of the shore crab Carcinus maenas after a meal, Physiol. Zool., 1990, 63, 735–756

    CAS  Google Scholar 

  26. Mente E., Carter C.G., Barnes R.S., Karapanagiotidis I.T., Protein synthesis in wildcaught Norway lobster (Nephrops norvegicus L.), J. Exp. Mar. Biol. Ecol., 2011, 409, 208–214

    Article  CAS  Google Scholar 

  27. Hewitt D.R., Response of protein turnover in the brown tiger prawn Penaeus esculentus to variation in dietary protein content, Comp. Biochem. Physiol. A, 1992, 103, 183–187

    Article  Google Scholar 

  28. Carter C., Houlihan D., Keissling A., Medale F., Jobling M., Physiological effects of feeding, In: Houlihan D., Boujard T., Jobling M. (Eds.), Food Intake in Fish, Blackwell Science Oxford, 2001

    Google Scholar 

  29. Millward D.J., Garlick P.J., James W.P.T., Nnanyelugo D.O., Ryatt J.S., Relationship between protein synthesis and RNA content in skeletal muscle., Nature, 1973, 241, 204–205

    Article  PubMed  CAS  Google Scholar 

  30. Robertson R.F., El Haj A.J., Clarke A., Peck L.S., Taylor E.W., The effects of temperature on metabolic rate and protein synthesis following a meal in the isopod Glyptonotus antarcticus Eights (1852), Polar Biol., 2001, 24, 677–686

    Article  Google Scholar 

  31. Mente E., Coutteau P., Houlihan D., Davidson I., Sorgeloos P., Protein turnover, amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei: effects of dietary protein source, J. Exp. Biol., 2002, 205, 3107–3122

    PubMed  CAS  Google Scholar 

  32. R.G., Growth in Crustacea-twenty years on, Hydrobiologia, 2001, 449, 11–122

    Google Scholar 

  33. Moltschaniwskyj N.A., Carter C.G., Protein Synthesis, degradation, and retention: Mechanisms of indeterminate growth in cephalopods, Physiol. Biochem. Zool., 2010, 83, 997–1008

    Article  PubMed  CAS  Google Scholar 

  34. Whiteley N.M., Taylor E.W., El Haj A.J., A comparison of the metabolic cost of protein synthesis in stenothermal and eurythermal isopod crustaceans, Am. J. Physiol., 1996, 271, R1295–R1303

    PubMed  CAS  Google Scholar 

  35. Mejean L., StrickerKrongrad A., Lluch A., Chronobiology, nutrition and metabolism, Pathol. Biol., 1996, 44, 603–609

    PubMed  CAS  Google Scholar 

  36. Robertson R.F., El Haj A.J., Clarke A., Taylor E.W., Effects of temperature on specific dynamic action and protein synthesis rates in the Baltic isopod crustacean, Saduria entomon, J. Exp. Mar. Biol. Ecol., 2001, 262, 113–129

    Article  CAS  Google Scholar 

  37. McCue M.D., Specific dynamic action: A century of investigation, Comp. Biochem. Physiol. A, 2006, 144, 381–394

    Article  CAS  Google Scholar 

  38. Katersky R.S., Carter C.G., The effect of temperature on post-prandial protein synthesis in juvenile barramundi, Lates calcarifer, Comp. Biochem. Physiol. A, 2010, 156, 529–536

    Article  Google Scholar 

  39. Carter C.G., Mente E., Barnes R.S., Nengas I., Protein synthesis in gilthead sea bream: response to partial fishmeal replacement, Br. J. Nutr., 2012, 108, 2190–2197

    Article  PubMed  CAS  Google Scholar 

  40. Whiteley N., Faulkner L.S., Temperature influences whole-animal rates of metabolism but not protein synthesis in a temperate intertidal isopod, Physiol. Biochem. Zool., 2005, 78, 227–238

    Article  PubMed  Google Scholar 

  41. Mente E., Legeay A., Houlihan D.F., Massabuau J.C., Influence of oxygen partial pressures on protein synthesis in feeding crabs, Am. J. Physiol., 2003, 284, R500–R510

    CAS  Google Scholar 

  42. Smith R.W., Houlihan D.F., Nilsson G.E., Brechin J.G., Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp, Am. J. Physiol., 1996, 271, R897–R904

    PubMed  CAS  Google Scholar 

  43. National Research Council, Nutrient Requirements of Fish and Shrimp, The National Academies Press, Washington, D.C., 2011

    Google Scholar 

  44. Intanai I., Taylor E.W., Whiteley N.M., Effects of salinity on rates of protein synthesis and oxygen uptake in the post-larvae and juveniles of the tropical prawn Macrobrachium rosenbergii (de Man), Comp. Biochem. Physiol. A, 2009, 152, 372–378

    Article  CAS  Google Scholar 

  45. McCarthy I.D., Houlihan D.F., Carter C.G., Individual variation in protein turnover and growth efficiency in rainbow trout, Oncorhynchus mykiss (Walbaum), Proc. Roy. Soc. Lond. B., 1994, 257, 141–147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris G. Carter.

About this article

Cite this article

Carter, C.G., Mente, E. Protein synthesis in crustaceans: a review focused on feeding and nutrition. cent.eur.j.biol. 9, 1–10 (2014). https://doi.org/10.2478/s11535-013-0134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0134-0

Keywords

Navigation