Skip to main content

Natural compounds with important medical potential found in Helleborus sp.

Abstract

Helleborus (family Ranunculaceae) are well-known as ornamental plants, but less known for their therapeutic benefits. Over the past few years, Helleborus sp. has become a subject of interest for phytochemistry, pharmacology and other medical research areas. On the basis of their usefulness in traditional medicine, it was assumed that their biochemical profile could be a source of metabolites with the potential to overcome critical medical issues. There are studies involving natural extracts from these species which demonstrate that Helleborus plants are a valuable source of chemical compounds with great medical potential. Some phytochemicals produced by these species have been separated and identified a few decades ago: hellebrin, deglucohellebrin, 20-hydroxyecdysone and protoanemonin. Lately, many other active compounds have been reported and considered as promising remedies for severe diseases such as cancer, ulcer, diabetes and also for common medical problems such as toothache, eczema, low immunity and arthritis. This paper is an overview of the Helleborus genus focusing on some recentlydiscovered compounds and their potential for finding new drugs and useful biochemicals derived from these species.

This is a preview of subscription content, access via your institution.

References

  1. Toma C., Rugină R., Medicinal plant’s anatomy. Atlas, [Anatomia plantelor medicinale. Atlas], Romanian Academy Ed., Bucharest, 1998 (in Romanian)

    Google Scholar 

  2. Kemertelidze E.P., Biologically active compounds and original remedies from plants growing in Georgia, Bull. Georgian Natl. Acad. Sci., 2007, 175, 91–96

    CAS  Google Scholar 

  3. van Tellingen C., Pliny’s pharmacopoeia or the Roman treatment, Neth. Heart J., 2007, 15, 118–120

    PubMed  Article  Google Scholar 

  4. Brussel D.E., Medicinal plants of Mt. Pelion, Greece, Econ. Bot., 2004, 58, S174–S202

    Google Scholar 

  5. Ramoutsaki I.A., Askitopoulou H., Konsolaki E., Pain relief and sedation in Roman Byzantine texts: Mandragoras officinarum, Hyoscyamos niger and Atropa belladonna, International Congress Series, 2002, 1242, 43–50

    Article  Google Scholar 

  6. Ciulei I., Grigorescu E., Stănescu U., Medicinal plants, phytochemistry and phytotherapy [Plante medicinale, fitochimie si fitoterapie, Vol. 1], Medical Ed., Bucharest, 1993 (in Romanian)

    Google Scholar 

  7. Adams M., Althera W., Kessler M., Kluge M., Hamburger M., Malaria in the renaissance: Remedies from European herbals from the 16th and 17th century, J. Ethnopharmacol., 2011, 133, 278–288

    PubMed  Article  Google Scholar 

  8. Scherrer A.M., Motti R., Weckerle C.S., Traditional plant use in the areas of Monte Vesole and Ascea, Cilento National Park (Campania, Southern Italy), J. Ethnopharmacol., 2005, 97, 129–143

    PubMed  Article  Google Scholar 

  9. Fujita T., Sezik E., Tabata M., Yeşilada E., Honda G., Takeda Y., et al., Traditional medicine in Turkey VII. Folk medicine in Middle and West Black Sea regions, Econ. Bot., 1995, 49, 406–422

    Article  Google Scholar 

  10. Menković N., Šavikin K., Tasić S., Zdunić G., Stešević D., Milosavljević S., et al., Ethnobotanical study on traditional uses of wild medicinal plants in Prokletije Mountains (Montenegro), J. Ethnopharmacol., 2011, 133, 97–107

    PubMed  Article  Google Scholar 

  11. Idolo M., Motti R., Mazzoleni S., Ethnobotanical and phytomedicinal knowledge in a longhistory protected area, the Abruzzo, Lazio and Molise National Park (Italian Apennines), J. Ethnopharmacol., 2010, 127, 379–395

    PubMed  Article  Google Scholar 

  12. Duke J.A., Bogenschutz-Godwin M.J., duCellier J., Duke P.-A.K., Handbook of Medicinal Herbs, 2nd ed., CRC Press LLC, Boca Raton, Florida, 2002

    Book  Google Scholar 

  13. Adams M., Berset C., Kessler M., Hamburger M., Medicinal herbs for the treatment of rheumatic disorders—A survey of European herbals from the 16th and 17th century, J. Ethnopharmacol., 2009, 121, 343–359

    PubMed  Article  Google Scholar 

  14. Gomes N.G.M., Campos M.G., Órfão J.M.C., Ribeiro C.A.F., Plants with neurobiological activity as potential targets for drug discovery, Prog. Neuro-Psychopharmacol Biol Psychiatry, 2009, 33, 1372–1389

    Article  CAS  Google Scholar 

  15. Jäger A.K., Gauguin B., Adsersen A., Gudiksen L., Screening of plants used in Danish folk medicine to treat epilepsy and convulsions, J. Ethnopharmacol., 2006, 105, 294–300

    PubMed  Article  Google Scholar 

  16. Cornara L., La Rocca A., Marsili S., Mariotti M.G., Traditional uses of plants in the Eastern Riviera (Liguria, Italy), J. Ethnopharmacol., 2009, 125, 16–30

    PubMed  Article  CAS  Google Scholar 

  17. Passalacqua N.G., De Fine G., Guarrera P.M., Contribution to the knowledge of the veterinary science and of the ethnobotany in Calabria region (Southern Italy), J. Ethnobiol. Ethnomed., 2006, 2, 52

    PubMed  Article  Google Scholar 

  18. Pieroni A., Nebel S., Quave C., Münz H., Heinrich M., Ethnopharmacy of the ethnic Albanians (Arbëreshë) of northern Basilicata, Italy. Fitoterapia, 2002, 73, 217–241

    Article  Google Scholar 

  19. Jarić S., Popović Z., Mačukanović-Jocić M., Djurdjević L., Mijatović M., Karadžić B., et al., An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia), J. Ethnopharmacol., 2007, 111, 160–175

    PubMed  Article  Google Scholar 

  20. Bogdan I., Nechifor A., Basea I., Hruban E., From Romanian folk medicine: nonspecific stimulus therapy using transcutaneous implantation of hellebore (Helleborus purpurascens, Fam. Ranunculaceae) in agriculturally useful animals, Dtsch. Tieraerztl. Wochenschr., 1997, 97, 525–529

    Google Scholar 

  21. Pârvu C., Plant’s Universe. Small encyclopaedia [Universul plantelor. Mica enciclopedie], 3rd ed., Encyclopaedia Ed., Bucharest, 2000 (in Romanian)

    Google Scholar 

  22. Hussain A., Khan M.N., Iqbal Z., Sajid M.S., An account of the botanical anthelmintics used in traditional veterinary practices in Sahiwal district of Punjab, Pakistan, J. Ethnopharmacol., 2008, 119, 185–190

    Article  Google Scholar 

  23. Pascual-Villalobos M.J., Robledo A., Screening for antiinsect activity in Mediterranean plants, Indust. Crops Prod., 1998, 8, 183–194

    Article  CAS  Google Scholar 

  24. Prieto J.M., Schaffner U., Barker A., Braca A., Siciliano T., Boevé J.-L., Sequestration of furostanol saponins by Monophadnus sawfly larvae, J. Chem. Ecol., 2007, 33, 513–524

    PubMed  Article  CAS  Google Scholar 

  25. Flomenbaum N.E., Goldfrank L.R., Hoffman R.S., Howland M.A, Lewin N.A., Nelson L.S., Goldfrank’s Toxicologic Emergencies, 8th ed., McGraw Hill Companies Inc., 2006

  26. Bruneton J., Pharmacognosy, Phytochemistry, Medicinal plants [Pharmacognosie, Phytochimie, Plantes medicinales], 4th ed., Tec & Doc Ed., Éditions médicales internationals, Paris, France, 2009 (in French)

    Google Scholar 

  27. True B.L., Dreisbach R.H., Dreisbach’s Handbook of Poisoning: Prevention, Diagnosis & Treatment, 13th ed., The Parthenon Publishing Group, London, UK, 2002

    Google Scholar 

  28. Cooper, M.R., Johnson A.W., Poisonous Plants & Fungi: An Illustrated Guide Stationery Office Books, Norwich, 1988

  29. Fuller T.C., McClintock E.M., Poisonous Plants of California, University of California Press, Berkeley, California, 1986

    Google Scholar 

  30. Karaca S., Kulac M., Kucuker H., Phytodermatitis caused by Ceratocephalus falcatus (Ranunculaceae), Eur. J. Dermatol., 2005, 15, 404–405

    PubMed  Google Scholar 

  31. Frohne, D., Pfander, H.J., Poisonous Plants: a handbook for doctors, pharmacists toxicologists, biologists and veterinarians, 2nd ed. Manson Publishing Inc., London, 2005

    Google Scholar 

  32. Karrer W., About hellebrin, a crystallized glycosid from Helleborus nigri roots [Über Hellebrin, ein kristalisiertes Glycosid aus Radix Hellebori nigri], Helv. Chim. Acta, 1943, 26, 1353 (in German)

    Article  CAS  Google Scholar 

  33. Wissner W., Kating H., Botanical and phytochemical investigations of species of the genus Helleborus growing in Europe and Asian Minor. II. Comparative phytochemical investigations of the cardio active glycosides and saponins, Planta Med., 1974, 26, 228–249

    PubMed  Article  CAS  Google Scholar 

  34. Wissner W., Kating H., Botanical and phytochemical investigations of species of the genus Helleborus growing in Europe and Asian Minor — III. The quantitative contents of hellebrin in plants of the natural biotops and in culture, Planta Med., 1974, 26, 364–374

    PubMed  Article  CAS  Google Scholar 

  35. Dewick P.M., Medicinal Natural Products: A Biosynthetic Approach, 2nd ed., John Wiley & Sons Inc., New York, USA, 2002

    Google Scholar 

  36. Gao H., Popescu R., Kopp B., Wang Z., Bufadienolides and their antitumor activity, Nat. Prod. Rep., 2011, 28, 953–969

    PubMed  Article  CAS  Google Scholar 

  37. Cioca C., Cucu V., Quantitative determination of hellebrin in the rhizomes and roots of Helleborus purpurascens W. et K., Planta Med., 1974, 26, 250–253

    Article  Google Scholar 

  38. Muhr P., Kerek F., Dreveny D., Likussar W., Schubert-Zsilavecz M., The structure of hellebrin, Liebigs Ann., 1995, 2, 443–444

    Article  Google Scholar 

  39. Challinor V.L., Piacente S., De Voss J.J., NMR assignment of the absolute configuration of C-25 in furostanol steroidal saponins, Steroids, 2012, 77, 504–511

    PubMed  Article  CAS  Google Scholar 

  40. Lacaille-Dubois M.A., Wagner H., A review of the biological and pharmacological activities of saponins, Phytomedicine, 1996, 2, 363–386

    PubMed  Article  CAS  Google Scholar 

  41. Lacaille-Dubois M.A., Wagner H., Bioactive saponins from plants: An update, In: Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry, Vol. 21, Elsevier, 2000

  42. Lacaille-Dubois M.A., Bioactive saponins with cancer related and immunomodulatory activity: Recent developments, In: Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry, Vol. 32, Elsevier, 2005

  43. Dinan L., Phytoecdysteroids: biological aspects, Phytochemistry, 2001, 57, 325–339

    PubMed  Article  CAS  Google Scholar 

  44. Walters D., Plant Defense: Warding off attack by pathogens, herbivores and parasitic plants, 1st ed., Blackwell Publishing Ltd., 2011

  45. Klein R., Phytoecdysteroids, Journal of American Herbalists Guild, 2004, 18–28

  46. Mares D., Antimicrobial activity of protoanemonin, a lactone from ranunculaceous plant. Mycopathologia, 1987, 98, 133–140

    PubMed  Article  CAS  Google Scholar 

  47. Tocan V., Baron O., Antibiotic effect of protoanemonine isolated from Ranunculus oxyspermus M.B., Boll. Chim. Farm., 1969, 108, 789–791

    PubMed  CAS  Google Scholar 

  48. Misra S., Dixit S., Antifungal principle of Ranunculus sceleratus, Econ. Bot. 1980, 34, 362–367

    Article  CAS  Google Scholar 

  49. Minakata H., Komura H., Nakanishi K., Kada T., Protoanemonin, an antimutagen isolated from plants, Mutation Research/Genetic Toxicology, 1983, 116, 317–322

    Article  CAS  Google Scholar 

  50. Martin M.L., San Roman L., Dominguez A., In vitro activity of protoanemonin, an antifungal agent, Planta Med., 1990, 56, 66–69

    PubMed  Article  CAS  Google Scholar 

  51. Dickens F., Jones H.E.H., Carcinogenic activity of a series of reactive lactones and related substances, Br. J. Cancer, 1961, 15, 85–100

    PubMed  Article  CAS  Google Scholar 

  52. Habermehl G.G., Ziemer P., Mitteleuropäische Giftpflanzen und ihre Wirkstoffe [Central European poisonous plants and their active ingredients] Springer, Berlin, 1999 (in German)

    Google Scholar 

  53. Martin, M.L., Ortiz de Urbina A.V., Montero M.J., Carron R., San Roman L., Pharmacologic effects of lactones isolated from Pulsatilla alpina subsp. Aphfolia, J. Ethnopharmacol., 1988, 24, 185–191

    PubMed  Article  CAS  Google Scholar 

  54. Roth L., Daunderer M., Kormann K., Giftpflanzen-Pflanzengifte [Poisonous plants-phytotoxins] Nikol Verlag, Hamburg, 2006 (in German)

    Google Scholar 

  55. Huang, Y.-H., Lee T.-H., Chan K.-J., Hsu F.-L., Wu Y.-C., Lee M.-H., Anemonin is a natural bioactive compound that can regulate tyrosinase-related proteins and mRNA in human melanocytes, J. Dermatol. Sci., 2008, 49, 115–123

    PubMed  Article  CAS  Google Scholar 

  56. Hu Y., Chen X., Duan H., Hu, Y.L., Mu X., Pulsatilla decoction and its active ingredients inhibit secretion of NO, ET-1, TNF-alpha, and IL-1 alpha in LPSinduced rat intestinal microvascular endothelial cells, Cell Biochem. Funct., 2009, 27, 284–288

    PubMed  Article  CAS  Google Scholar 

  57. Duan H., Zhang Y., Xu J., Qiao J., Suo Z., Hu G., Mu X., Effect of anemonin on NO, ET-1 and ICAM-1 production in rat intestinal microvascular endothelial cells, J. Ethnopharmacol., 2006, 104, 362–366

    PubMed  Article  CAS  Google Scholar 

  58. Lee T.H., Huang N.K., Lai T.C., Yang A.T.Y., Wang G.J., Anemonin, from Clematis crassifolia, potent and selective inducible nitric oxide synthase inhibitor, J. Ethnopharmacol., 2008, 116, 518–527

    PubMed  Article  CAS  Google Scholar 

  59. Colombo M.L., Tome’ F., Servettaz O., Bugatti C., Phytochemical evaluation of Helleborus species growing in northern Italy, Pharm. Biol., 1990, 28, 219–223

    Article  CAS  Google Scholar 

  60. Dirsch V., Lacaille-Dubois M.-A., Wagner H., Dracoside, a new steroidal saponin from Helleborus purpurascens, Nat. Prod. Lett., 1994, 4, 29–33

    Article  CAS  Google Scholar 

  61. Meng Y., Whiting P., Šik V., Rees H. H., Dinan L., Ecdysteroids and bufadienolides from Helleborus torquatus (Ranunculaceae), Phytochemistry, 2001, 57, 401–407

    PubMed  Article  CAS  Google Scholar 

  62. Maleš Z., Medić-Šarić M., Optimization of TLC analysis of flavonoids and phenolic acids of Helleborus atrorubens Waldst. et Kit., J. Pharm. Biomed. Anal., 2001, 24, 353–359

    PubMed  Article  Google Scholar 

  63. Watanabe K., Mimaki Y., Sakuma C., Sashida Y., A novel polyoxygenated spirostanol trisdesmoside from the rhizomes of Helleborus orientalis, Chem. Lett., 2002, 31, 772–773

    Article  Google Scholar 

  64. Watanabe K., Mimaki Y., Sakagami H., Sashida Y., Bufadienolide and spirostanol glycosides from the rhizomes of Helleborus orientalis, J. Nat. Prod., 2003, 66, 236–241

    PubMed  Article  CAS  Google Scholar 

  65. Watanabe K., Sakagami H., Mimaki Y., Four new steroidal saponins from the rhizomes of Helleborus orientalis, Heterocycles, 2005, 65, 775–785

    Article  CAS  Google Scholar 

  66. Mimaki Y., Watanabe K., Sakuma C., Sakagami H., Sashida Y., Novel polyoxygenated spirostanol glycosides from the rhizomes of Helleborus orientalis, Helv. Chim. Acta, 2003, 86, 398–407

    Article  CAS  Google Scholar 

  67. Braca A., Prieto J.M., De Tommasi N., Tomè F., Morelli I., Furostanol saponins and quercetin glycosides from the leaves of Helleborus viridis L., Phytochemistry, 2004, 65, 2921–2928

    PubMed  Article  CAS  Google Scholar 

  68. Akin S., Anil H., A furostanol saponin and phytoecdysteroid from roots of Helleborus orientalis, Chem. Nat. Compd., 2007, 43, 90–92

    Article  CAS  Google Scholar 

  69. Prieto J.M., Siciliano T., Braca A., A new acylated quercetin glycoside and other secondary metabolites from Helleborus foetidus, Fitoterapia, 2006, 77, 203–207

    PubMed  Article  CAS  Google Scholar 

  70. Muzashvili T.S., Benidze M.M., Skhirtladze A.V., Sulakvelidze Ts. P., Steroidal sapogenins from subterranean organs of Helleborus caucasicus, Chem. Nat. Compd., 2006, 42, 613

    Article  CAS  Google Scholar 

  71. Bassarello C., Muzashvili T., Skhirtladze A., Kemertelidze E., Pizza C., Piacente S., Steroidal glycosides from the underground parts of Helleborus caucasicus, Phytochemistry, 2008, 69, 1227–1233

    PubMed  Article  CAS  Google Scholar 

  72. Muzashvili T.S., Kemertelidze E.P., Steroidal compounds from Helleborus caucasicus leaves, Chem. Nat. Compd., 2009, 45, 925–926

    Article  CAS  Google Scholar 

  73. Rosselli S., Maggio A., Bruno M., Spadaro V., Formisano C., Irace C., et al., Furostanol saponins and ecdysones with cytotoxic activity from Helleborus bocconei ssp. intermedius, Phytother. Res., 2009, 23, 1243–1249

    PubMed  Article  CAS  Google Scholar 

  74. Mimaki Y., Matsuo Y., Watanabe K., Sakagami H., Furostanol glycosides from the rhizomes of Helleborus orientalis, J. Nat. Med., 2010, 64, 452–459

    PubMed  Article  CAS  Google Scholar 

  75. Yang J., Zhang Y.-H., Miao F., Zhou L., Sun W., Two new bufadienolides from the rhizomes of Helleborus thibetanus Franch, Fitoterapia, 2010, 81, 636–639

    PubMed  Article  CAS  Google Scholar 

  76. Yang F.-Y., Su Y.-F., Wang Y., Chai X., Han X., Wu Z.-H., et al., Bufadienolides and phytoecdysones from the rhizomes of Helleborus thibetanus (Ranunculaceae), Biochem. Sys. Ecol., 2010, 38, 759–763

    Article  CAS  Google Scholar 

  77. Stochmal A., Perrone A., Piacente S., Oleszek W., Saponins in aerial parts of Helleborus viridis L., Phytochem. Lett., 2010, 3, 129–132

    Article  CAS  Google Scholar 

  78. Muzashvili T., Perrone A., Napolitano A., Kemertelidze E., Pizza C., Piacente S., Caucasicosides E-M, furostanol glycosides from Helleborus caucasicus, Phytochemistry, 2011, 72, 2180–2188

    PubMed  Article  CAS  Google Scholar 

  79. Vitalini S., Braca A., Fico G., Study on secondary metabolite content of Helleborus niger L. leaves, Fitoterapia, 2011, 82, 152–154

    PubMed  Article  CAS  Google Scholar 

  80. Stec B., Plant thionins — the structural perspective, Cell. Mol. Life Sci., 2006, 63, 1370–1385

    PubMed  Article  CAS  Google Scholar 

  81. Milbradt A.G., Kerek F., Moroder L., Renner C., Structural Characterization of Hellethionins from Helleborus purpurascens, Biochemistry, 2003, 42, 2404–2411

    PubMed  Article  CAS  Google Scholar 

  82. Bhave M., Methuku D.R., Small cysteinerich proteins from plants: a rich resource of antimicrobial agents, In: Science against microbial pathogens: communicating current research and technological advances, Ed. A. Méndez-Vilas, 2011, 1074–1083

  83. Pelegrini P.B., Franco O.L., Plant γ-thionnins: Novel insights of the mechanism of action of the multi-functional class of defence proteins, Int. J. Biochem. Cell B., 2005, 37, 2239–2253

    Article  CAS  Google Scholar 

  84. Kerek F., Boicil, a new and very efficient antialgic, spasmolytic, and blood vessel regulating drug obtained from the plant Helleborus. First International Conference on Chemistry and Biochemistry of Biologically Active Natural Compounds (FECS, 1981), 2, 22–37

    CAS  Google Scholar 

  85. Erdemoglu N., Küpeli E., Yeşilada E., Antiinflammatory and antinociceptive activity assessment of plants used as remedy in Turkish folk medicine, J. Ethnopharmacol., 2003, 89, 123–129

    PubMed  Article  Google Scholar 

  86. Nueleanu V.I., The effect of the unspecific therapy with hellebore (Helleborus purpurascens) on young sheep, Proceedings. Animal Husbandry. 43rd Croatian and 3rd International Symposium on Agriculture, (18–21 February 2008, Opatija, Croatia), 791–794

  87. Davidović V., Joksimović Todorović M., Stojanović B., Relić, R., Plant usage in protecting the farm animal health, Biotechnology in Animal Husbandry, 2012, 28, 87–98

    Article  Google Scholar 

  88. Lupu A.R., MCS-18 — potential therapeutic agent in neuro-immunological pathology [MCS-18 — potential agent terapeutic in patologii neuroimune], Ph.D. Thesis, University of Bucharest, Faculty of Biology, Bucharest, Romania, 2009 (in Romanian)

    Google Scholar 

  89. Kerek F., Stimac R., Apell H.-J., Freudenmann F., Moroder L., Characterization of the macrocyclic carbon suboxide factors as potent Na, K-ATPase and SR Ca-ATPase inhibitors, Biochim. Biophys. Acta, 2002, 1567, 213–220

    CAS  Google Scholar 

  90. Kerek F., The structure of the digitalis like and natriuretic factors identified as macrocyclic derivatives of the inorganic carbon suboxide, Hypertens. Res., 2000, 23, 33–38

    Article  Google Scholar 

  91. Szegli G., Herold A., Cremer L., Călugaru A., Matache C., Durbaca S., et al., Immunpharmacology studies on MCS-18, Investigational Medicinal Product Dossier, 2005, Part 2.2, 1–42

  92. Kerek F., Szegli G., Cremer L., Lupu A.R., Durbaca S., Călugaru A., et al., The novel arthritis drug-substance MCS-18 down-regulates in vivo antibody production, Acta Microbiol. Immunol. Hung., 2008, 55, 15–31

    PubMed  Article  CAS  Google Scholar 

  93. Neacşu C., Ciobanu C., Barbu I., Toader O., Szegli G., Kerek F., et al., Substance MCS-18 isolated from Helleborus purpurascens is a potent antagonist of the capsaicin receptor, TRPV1, in rat cultured sensory neurons, Physiol. Res., 2010, 59, 289–298

    PubMed  Google Scholar 

  94. Horstmann B., Zinser E., Turza N., Kerek F., Steinkasserer A., MCS-18, a novel natural product isolated from Helleborus purpurascens, inhibits dendritic cell activation and prevents autoimmunity as shown in vivo using the EAE model, Immunobiology, 2008, 212, 839–853

    Article  Google Scholar 

  95. Littmann L., Rößner S., Kerek F., Steinkasserer A., Zinser E., Modulation of murine bone marrowderived dendritic cells and B-cells by MCS-18 a natural product isolated from Helleborus purpurascens, Immunobiology, 2008, 213, 871–878

    PubMed  Article  CAS  Google Scholar 

  96. Seifarth C., Littmann L., Resheq Y., Rößner S., Goldwich A., Pangratz N., et al., MCS-18, a novel natural plant product prevents autoimmune diabetes, Immunol. Lett., 2011, 139, 58–67

    PubMed  Article  CAS  Google Scholar 

  97. Apetrei N.S., Lupu A.-R., Calugaru A., Kerek F., Szegli G., Cremer L., The antioxidant effects of some progressively purified fractions from Helleborus purpurascens, Rom. Biotechnol. Lett., 2011, 16, 6673–6681

    Google Scholar 

  98. Păun-Roman G., Neagu E., Radu G.L., Membrane processes for the purification and concentration of Helleborus purpurascens extracts and evaluation of antioxidant activity, Rev. Chim. (Bucharest), 2010, 61, 877–881

    Google Scholar 

  99. Čakar J., Parić A., Vidic D., Haverić A., Haverić S., Maksimović M., et al., Antioxidant and antiproliferative activities of Helleborus odorus Waldst. & Kit, H. multifidus Vis. and H. hercegovinus Martinis, Nat. Prod. Res., 2011, 25, 1969–1974

    PubMed  Article  Google Scholar 

  100. Trenin D.S., Volodin V.V., 20-hydroxyecdysone as a human lymphocyte and neutrophil modulator: In vitro evaluation, Arch. Insect Biochem. Physiol., 1999, 41, 156–161

    PubMed  Article  CAS  Google Scholar 

  101. Puglisi S., Speciale A., Acquaviva R., Ferlito G., Ragusa S., De Pasquale R., et al., Antibacterial activity of Helleborus bocconei Ten. subsp. siculus root extracts, J. Ethnopharmacol., 2009, 125, 175–177

    PubMed  Article  CAS  Google Scholar 

  102. Rosselli S., Maggio A., Formisano C., Napolitano F., Senatore F., Spadaro V., et al., Chemical composition and antibacterial activity of extracts of Helleborus bocconei Ten. subsp. intermedius, Nat. Prod. Commun., 2007, 2, 675–679

    CAS  Google Scholar 

  103. Lindholm P., Gullbo J., Claeson P., Göransson U., Johansson S., Backlund A., et al., Selective cytotoxicity evaluation in anticancer drug screening of fractionated plant extracts, J. Biomol. Screen., 2002, 7, 333–340

    PubMed  Article  CAS  Google Scholar 

  104. Muzashvili T., Skhirtladze A., Sulakvelidze T., Benidze M., Mshviladze V., Legault J., et al., Cytotoxic activity of Helleborus caucasicus A. Br., Georg. Chem. J., 2006, 6, 684–685

    Google Scholar 

  105. Jesse P., Mottke G., Eberle J., Seifert G., Henze G., Prokop A., Apoptosis-inducing activity of Helleborus niger in ALL and AML, Pediatr. Blood Cancer, 2009, 52, 464–469

    PubMed  Article  Google Scholar 

  106. Vochita G., Mihai C.T., Gherghel D., Iurea D., Roman G., Radu G.L., et al., New potential antitumoral agents of polyphenolic nature obtained from Helleborus purpurascens by membranary micro- and ultrafiltration techniques, SAAIC, 2011, 12, 41–51

    Google Scholar 

  107. Büssing A., Schweizer K., Effects of a phytopreparation from Helleborus niger on immunocompetent cells in vitro, J. Ethnopharmacol., 1998, 59, 139–146

    PubMed  Article  Google Scholar 

  108. Smulders M.J.M., de Klerk G.J., Epigenetics in Plant Tissue Culture, J. Plant Growth Regul., 2011, 63 137–146

    Article  CAS  Google Scholar 

  109. Grabowski K., Schneider G., Properties and Architecture of Drugs and Natural Products Revisited, Curr. Chem. Biol., 2007, 1, 115–127

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cornelia Maior.

About this article

Cite this article

Maior, M.C., Dobrotă, C. Natural compounds with important medical potential found in Helleborus sp.. cent.eur.j.biol. 8, 272–285 (2013). https://doi.org/10.2478/s11535-013-0129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0129-x

Keywords

  • Helleborus sp.
  • Phytochemicals
  • Secondary metabolites
  • Active compounds
  • Therapeutic potential
  • Anticancer properties
  • Cytotoxicity
  • Immunomodulation