Grazed Pannonian grassland beta-diversity changes due to C4 yellow bluestem

Abstract

This study investigates how yellow bluestem affects biodiversity in a typical Pannonian grassland. Beta diversity (i.e. the finescale spatial variability of species compositions), was estimated by the realized number of species combinations sampled at various scales. Sampling was performed by a standard protocol. Presences of plant species were recorded along 52.2 m long belt transect of 1044 units of 0.05x0.05 m contiguous microquadrats. According to the results the massive presence of tested C4 grass significantly reduced species richness of the grassland. Beta diversity assessment revealed that 90% of species combinations were lost due to yellow bluestem invasion. Fine-scale spatial pattern analyses showed complete local extinctions of other species from microsites dominated by yellow bluestem. This local extinction is enhanced by the specific clonal architecture of this species and by the accumulation of litter. Other dominant grasses had no effect on fine scale diversity, i.e. they could coexist well with other elements of the local flora. This study presents currently developed microhabitat types, forecasts and also draws attention to the danger that climate warming will probably enhance the spread of this detrimental C4 species.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Pärtel M., Bruun H.H., Sammul M., Biodiversity in temperate European grasslands: origin and conservation, Grassl. Sci. Eur., 2005, 10, 1–14

    Google Scholar 

  2. [2]

    Hopkins A., Del Prado A., Implications of climate change for grassland in Europe: impacts, adaptations and mitigation options: a review, Grass Forage Sci., 2007, 62, 118–126

    Article  CAS  Google Scholar 

  3. [3]

    Conant R.T., Paustian K., Elliott E.T., Grassland management and conversion into grassland: effect on soil carbon, Ecol. Appl., 2001, 11, 343–355

    Article  Google Scholar 

  4. [4]

    Zimmermann Z., Szabó G., Bartha S., Szentes Sz., Penksza K., Effects of sheep grazing on the nature conservation value of grazed and abandoned grasslands, AWETH, 2012, 7, 234–262, (in Hungarian)

    Google Scholar 

  5. [5]

    Borhidi A., (Ed.), Plant associations of Hungary, Akadémiai Kiadó, Budapest, 2003 (in Hungarian)

    Google Scholar 

  6. [6]

    Hobbs R.J., Arico S., Aronson J., Baron JS., Bridgewater P., Cramer V.A., et al., Novel ecosystems: theoretical and management aspects of the new ecological world order, Glob. Ecol. Biogeogr., 2006, 15, 1–7

    Article  Google Scholar 

  7. [7]

    Illyés E., Bölöni J., (Eds,). Slope steppes, loess steppes and forest steppe meadows in Hungary, MTA ÖBKI, Budapest, 2007

    Google Scholar 

  8. [8]

    Kiss T., Lévai P., Ferencz Á., Szentes Sz., Hufnagel L., Nagy A., et al., Change of composition and diversity of species and grassland management between different grazing intensity in pannonian dry and wet grasslands, Appl. Ecol. Env. Res., 2011, 9, 197–230

    Google Scholar 

  9. [9]

    Szentes Sz., Dannhauser C., Coetzee R., Penksza K, Biomass productivity, nutrition content and botanical investigation of Hungarian Grey cattle pasture in Tapolca basin, AWETH, 2011, 7, 180–198 (in Hungarian)

    Google Scholar 

  10. [10]

    Szentes Sz., Penksza K., Orosz Sz., Dannhauser C., Forage managed investivagation on the Hungarian grey cattle pasture near Balaton Uplands, AWETH, 2011, 7, 180–198, (in Hungarian)

    Google Scholar 

  11. [11]

    Zólyomi B, The natural vegetation of Budapest and its surrounding. Loess vegetation. In: Pécsi M., (Ed.), Geography and biogeography of Budapest, Akadémiai Kiadó, Budapest, 1958, (in Hungarian)

    Google Scholar 

  12. [12]

    Zólyomi B., Fekete G., The Pannonian loess steppe: differentiation in space and time, Abstr. Bot., 1994, 18, 29–41

    Google Scholar 

  13. [13]

    Horváth A., The spatial organization of loess vegetation at Mezőföld, Hungary, Scientia Kiadó, Budapest, 2002 (in Hungarian)

    Google Scholar 

  14. [14]

    Bartha S., Composition, differentiation and dynamics of the grasslands in the forest steppe biome, In: Illyés E., Bölöni J., (Eds.), Slope steppes, loess steppes and forest steppe meadows in Hungary, MTA ÖBKI, Vácrátót, 2007

    Google Scholar 

  15. [15]

    Illyés E., Molnár Z., Csathó A., I., Bothriochloa ischaemum dominated steppes, In: Illyés E., Bölöni J., (Eds.), Slope steppes, loess steppes and forest steppe meadows in Hungary, MTA ÖBKI, Budapest, 2007

    Google Scholar 

  16. [16]

    Wittmer M.H.O.M., Auerswald K., Bai Y.F., Schaufele R., Schnyder H., Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation, Global Change Biol., 2010, 16, 605–616

    Article  Google Scholar 

  17. [17]

    Catorci A., Ottaviani G., Cesaretti S., Functional and coenological changes under different long-term management conditions in Apennine meadows (central Italy), Phytocoenologia, 2011, 41, 45–58

    Article  Google Scholar 

  18. [18]

    Catorci A., Cesaretti S., Gatti R., Ottaviani G., Abiotic and biotic changes due to spread of Brachypodium genuense (DC.) Roem. & Schult. in sub-Mediterranean meadows, Community Ecol., 2011, 12, 117–125

    Article  Google Scholar 

  19. [19]

    Harlen J, Celarier R., Richardson W., Studies on Old World Bluestem II, Oklahoma Agr. Exp. Sta. Tech. Bull. T-72, 1958

  20. [20]

    Gabbard B.L., Fowler N.L., Wide ecological amplitude of diversity-reducing invasive grass, Biol. Invasions., 2007, 9, 149–160

    Article  Google Scholar 

  21. [21]

    Schmidt C.D., Hickman K.R., Channell R., Harmoney K., Stark W., Competitive abilities of native grasses and non-native (Bothriochloa spp.) grasses, Plant Ecol., 2008, 197, 69–80

    Article  Google Scholar 

  22. [22]

    Szabó I., Kercsmár V., Hársvölgyiné Szőnyi É., Comparative study of loess steppe pastures with/ without domination of bluegrass (Bothriochloa ischaemum), Grassl. Stud., 2008, 6, 55–61 (in Hungarian)

    Google Scholar 

  23. [23]

    Pickett S.T.A., Cadenasso M.L., Bartha S., Implications from the Buell-Small Succession Study for vegetation restoration, Appl. Veg. Sci., 2001, 4, 41–52

    Article  Google Scholar 

  24. [24]

    Davies K.F., Chesson P., Harrison S., Inouye B.D., Melbourne B.A., Rice K.J., Spatial heterogeneity explains the scale dependence of the native-exotic diversity relationship, Ecology, 2005, 86, 1602-0610

  25. [25]

    Bassett I., Paynter Q., Hankin R., Beggs J.R., Characterising alligator weed (Alternanthera philoxeroides; Amaranthaceae) invasion at a northern New Zealand lake, New Zeal. J. Ecol., 2012, 36, 216–222

    Google Scholar 

  26. [26]

    Stohlgren T.J., Jarnevich C., Geneva W., Ching G.W., Evangelista P.H.E., Scale and plant invasions: a theory of biotic acceptance, Preslia, 2006, 78, 405–426

    Google Scholar 

  27. [27]

    During H.J., Willems J.H., Diversity models applied to a chalk grassland, Vegetatio, 1984, 57, 103–114

    Article  Google Scholar 

  28. [28]

    Willems J.H., Peet R.K., Bik L., Changes in chalk-grassland structure and species richness resulting from selective nutrient additions, J. Veg. Sci., 1993, 4, 203–212

    Article  Google Scholar 

  29. [29]

    Canals R.-M., Sebastiá M.-T., Analyzing mechanisms regulating diversity in rangelands through comparative studies: a case in the southwestern Pyrennees, Biodivers. Conserv., 2000, 9, 965–984

    Article  Google Scholar 

  30. [30]

    Juhász-Nagy P., Podani J., Information theory methods for the study of spatial processes and succession, Vegetatio, 1983, 51, 129–140

    Article  Google Scholar 

  31. [31]

    Bartha S., Czárán T., Podani J., Exploring plant community dynamics in abstract coenostate spaces, Abstr. Bot., 1998, 22, 49–66

    Google Scholar 

  32. [32]

    Virágh K., Horváth A., Bartha S., Somodi I., A multiscale methodological approach novel in monitoring the effectiveness of grassland management, Community Ecol., 2008, 9, 237–246

    Article  Google Scholar 

  33. [33]

    Bartha S., Campetella G., Kertész M., Hanh I., Kröel-Dulay Gy., Rédei T., et al., Beta diversity and community differentiation in dry perennial sand grassland, Ann. di Bot., 2011, 1, 9–18

    Google Scholar 

  34. [34]

    Erdős L., Gallé R., Bátori Z., Papp M., Körmöczi L., Properties of shrubforest edges:a case study from South Hungary, Cent. Eur. J. Biol., 2011, 6, 639–658

    Article  Google Scholar 

  35. [35]

    Bartha S., Kertész M., The importance of neutral-models in detecting interspecific spatial associations from’ trainsect’ data, Tiscia, 1998, 31, 85–98

    Google Scholar 

  36. [36]

    Bartha S., Campetella G., Canullo R., Bódis J., Mucina L., On the Importance of Fine-Scale Spatial Complexity in Vegetation Restoration Studies, Int. J. Ecol. Environ. Sci., 2004, 30, 101–116

    Google Scholar 

  37. [37]

    Bartha S., Zimmermann Z., Horváth A., Szentes Sz, Sutyinszki Zs., Szabó G., et al., High resolution vegetation assessment with beta-diversity — a moving window approach, Agr. Informat., 2011, 2, 1–9

    Google Scholar 

  38. [38]

    Juhász-Nagy P., Notes on compositional divesity, Hydrobiologia, 1993, 249, 173–182

    Article  Google Scholar 

  39. [39]

    Roxburgh S.H., Chesson P., A new method for detecting species associations with spatially autocorrelated data, Ecology, 1998, 79, 2180–2192

    Article  Google Scholar 

  40. [40]

    Baer S.G., Blair J.M., Collins S.L., Knapp A.K., Plant community responses to resource availability and heterogeneity during restoration, Oecologia, 2004, 139, 617–629

    Article  CAS  PubMed  Google Scholar 

  41. [41]

    McCain K.N.S., Baer S.G., Blair J.M., Wilson G.W.T., Dominant Grasses Suppress Local Diversity in Restored Tallgrass Prairie, Restor. Ecol., 2010, 18, 40–49

    Article  Google Scholar 

  42. [42]

    Wilsey B.J., Productivity and subordinate species response to dominant grass species and seed source during restoration, Restor. Ecol., 2010, 18, 628–637

    Article  Google Scholar 

  43. [43]

    Virágh K., Horváth F., Bokros S., Modelling the regeneration dynamics of a Hungarian loess steppe community, In: Demeter A., Peregovits L., (Eds.), ’Ecological processes: Current status and Perspectives’, Abstracts of EURECO’95, 7th European Ecological Congress, Budapest, August 20–25, 1995, Hungary

  44. [44]

    Török P., Deák B., Vida E., Valkó O., Lengyel S., Tóthmérész B., Restoring grassland biodiversity: sowing low-diversity seed mixtures can lead to rapid favourable changes, Biol. Conserv., 2010, 143, 806–812

    Article  Google Scholar 

  45. [45]

    Török P., Vida E., Deák B., Lengyel S., Tóthmérész B., Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs, Biodiv. Conserv., 2011, 20, 2311–2332

    Article  Google Scholar 

  46. [46]

    Házi J., Bartha S., Szentes Sz., Penksza K., Seminatural grassland management by mowing of Calamagrostis epigeios in Hungary, Plant Biosyst, 2011, 145, 699–707

    Article  Google Scholar 

  47. [47]

    Oborny B., Bartha S., Clonality in plant community — an overview, Abstr. Bot., 1995, 19, 115–127

    Google Scholar 

  48. [48]

    van der Maarel E., (Ed.), Vegetation ecology, Blackwell, Oxford, 2005

    Google Scholar 

  49. [49]

    Holdredge C., Bertness M.D., Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands, Biol. Invasions, 2011, 13, 423–433

    Article  Google Scholar 

  50. [50]

    Facelli J.M., Pickett S.T.A., Plant litter: its dynamics and effects on plant community structure, Bot. Rev., 1991, 57, 1–32

    Article  Google Scholar 

  51. [51]

    Xiong S., Nilsson C., The effects of plant litter on vegetation: a meta-analysis, J. Ecol., 1999, 87, 984–994

    Article  Google Scholar 

  52. [52]

    Ruprecht E., Enyedi M.Z., Eckstein R.L., Donath T.W., Restorative removal of plant litter and vegetation 40 years after abandonment enhances re-emergence of steppe grassland vegetation, Biol. Conserv., 2010, 143, 449–456

    Article  Google Scholar 

  53. [53]

    Deák B., Valkó O., Kelemen A., Török P., Miglécz T., Ölvedi T., et al., Litter and graminoid biomass accumulation suppresses weedy forbs in grassland restoration, Plant Biosyst, 2011, 145, 730–737

    Article  Google Scholar 

  54. [54]

    Kalapos T., C3 and C4 grasses of Hungary: their environmental requirements, phenology and role in the vegetation, Abstr. Bot., 1991, 15, 83–88

    Google Scholar 

  55. [55]

    Szente K, Nagy Z, Tuba Z., Fekete G., Photosynthesis of Festuca rupicola and Bothriochloa ischaemum under degradation and cutting pressure in a semiarid loess grassland, Photosynthetica, 1996, 32, 399–407

    Google Scholar 

  56. [56]

    Kalapos T., Mojzes A., What is the future of C4 grasses in temperate grasses during glocal changes?, In: Kröel-Dulay Gy., Kalapos T., Mojzes A., (Eds.), Soil-vegetation-climate interactions, ÖBKI, Vácrátót, 2008, (in Hungarian)

    Google Scholar 

  57. [57]

    Mojzes A., Kalapos T., Leaf gas exchange responses to abrupt changes in light intensity for two invasive and two non-invasive C4 grass species, Environ. Exp. Bot., 2008, 64, 232–238

    Article  CAS  Google Scholar 

  58. [58]

    Johnstone I.M., Plant invasion windows: A time-based classification of invasion potential, Biol. Rev., 1986, 61, 369–394

    Article  Google Scholar 

  59. [59]

    Kollmann J., Regeneration window for fleshy-fruited plants during scrub development on abandoned grassland, EcoScience, 1995, 2, 213–222

    Google Scholar 

  60. [60]

    Bartha S., Meiners S.J., Pickett S.T.A., Cadenasso M.L., Plant colonization windows in a mesic old field succession, Appl Veg Sci, 2003, 6, 205–212

    Google Scholar 

  61. [61]

    Knapp A.K., Briggs J.M., Hartnett D.C., Collins S.L. (Eds.), Grassland dynamics. Long-term ecological research in tallgrass prairie, Oxford Univ. Press, N.Y, 1998

    Google Scholar 

  62. [62]

    Auerswald K., Wittmer M.H.O.M., Bai Y., Yang H., Taube F., Susenbeth A., et al., C4 abundance in an Inner Mongolia grassland system is driven by temperature-moisture interaction, not grazing pressure, Basic Appl. Ecol., 2012, 13, 67–75

    Article  Google Scholar 

  63. [63]

    Follak S., Potential distribution and environmental threat of Pueraria lobata, Cent. Eur. J. Biol., 2011, 6, 457–469

    Article  Google Scholar 

  64. [64]

    Šilc U., Vrbničanin S., Božić D., Čarni A., Stevanović Z.D., Alien plant species and factors of invasiveness of anthropogenic vegetation in the Northwestern Balkans — a phytosociological approach, Cent. Eur. J. Biol., 2012, 7, 720–730

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Károly Penksza.

About this article

Cite this article

Szentes, S., Sutyinszki, Z., Szabó, G. et al. Grazed Pannonian grassland beta-diversity changes due to C4 yellow bluestem. cent.eur.j.biol. 7, 1055–1065 (2012). https://doi.org/10.2478/s11535-012-0101-9

Download citation

Keywords

  • Dominant grass
  • Plant neighbourhood diversity
  • Litter
  • Spatial association
  • Climate change