Central European Journal of Biology

, Volume 7, Issue 5, pp 794–800 | Cite as

Ser49Gly and Arg389Gly polymorphisms of the ADRB1 gene and endurance performance

  • Marek Sawczuk
  • Agnieszka Maciejewska-Karlowska
  • Pawel Cieszczyk
  • Aleksandra Zarebska
Research Article



The ADRB1 gene encodes the β1-adrenergic receptor and is thought to influence exercise capacity because of its contribution to the regulation of the cardiovascular system. The aim of the study was to determine the distribution of the ADRB1 genotypes Ser49Gly and Arg389Gly and identify the haplotypes within a group of Polish athletes to investigate the possible association between genetic polymorphisms in ADRB1 and athletic performance.


223 Polish athletes and 354 volunteers were recruited for this study. All samples were genotyped using an allelic discrimination assay.


The frequencies of the 49Gly allele and the 49Gly:Arg389 haplotype were significantly higher in the subgroup of endurance athletes than in the controls (11% vs. 6.4%, P=0.026; 11% vs. 6.3%, P=0.048 for 49Gly allele and 49Gly:Arg389 haplotype, respectively). The odds ratio of having the 49Gly allele vs. Ser49/Ser49 genotype for endurance athletes was 2.00 (95% CI: 1.16–3.47; P=0.018). In the Polish athletes, the odds ratio of the ADRB1 49Gly:Arg389 haplotype for endurance athletes subgroup was 1.82 (95% confidence interval 1.10–3.00; P=0.026).


Ser49Gly, but not Arg389Gly, marker of the ADRB1 gene and one haplotype combination of both polymorphisms are associated with endurance athlete status. The 49Gly variant and the 49Gly:Arg389 haplotype have a beneficial effect on sports proficiency.


Beta1-adrenergic receptor Haplotype Genotype Physical performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Williams A.G., Folland J.P., Similarity of polygenic profiles limits the potential for the elite human physical performance, J. Physiol., 2008, 586, 113–121PubMedCrossRefGoogle Scholar
  2. [2]
    Defoor J., Martens K., Zielinska D., Matthijs G., Van Nerum H., Schepers D, et al., The CAREGENE study: polymorphisms of the beta1-adrenoceptor gene and aerobic power in coronary artery disease, Eur. Heart J., 2006, 27, 808–816PubMedCrossRefGoogle Scholar
  3. [3]
    Wagoner L.E., Craft L.L., Zengel P., McGuire N., Rathz D.A., Dorn G.W. 2nd, et al., Polymorphisms of the beta1-adrenergic receptor predict exercise capacity in heart failure, Am. Heart J., 2002, 144, 840–846PubMedGoogle Scholar
  4. [4]
    Mason D.A., Moore J.D., Green S.A., Liggett S.B., A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor, J. Biol. Chem., 1999, 274, 12670–12674PubMedCrossRefGoogle Scholar
  5. [5]
    Tesson F., Charron P., Peuchmaurd M., Nicaud V., Cambien F., Tiret L., et al., Characterization of a unique genetic variant in the beta1-adrenoceptor gene and evaluation of its role in idiopathic dilated cardiomyopathy, J. Mol. Cell. Cardiol., 2000, 31, 1025–1032CrossRefGoogle Scholar
  6. [6]
    Maqbool A., Hall A.S., Ball S.G., Balmforth A.J., Common polymorphisms of beta1-adrenoceptor: identification and rapid screening assay, Lancet, 1999, 353, 897PubMedCrossRefGoogle Scholar
  7. [7]
    Filigheddu F., Reid J.E., Troffa C., PinnaParpaglia P., Argiolas G., Testa A., et al., Genetic polymorphisms of the beta-adrenergic system: association with essential hypertension and response to betablockade, Pharmacogenomics J., 2004, 4, 154–160PubMedCrossRefGoogle Scholar
  8. [8]
    Magnusson Y., Levin M.C., Eggertsen R., Nyström E., Mobini R., Schaufelberger M., et al., Ser49Gly of beta1-adrenergic receptor is associated with effective beta-blocker dose in dilated cardiomyopathy, Clin. Pharmacol. Ther., 2005, 78, 221–231PubMedCrossRefGoogle Scholar
  9. [9]
    Metra M., Zani C., Covolo L., Nodari S., Pezzali N., Gelatti U., et al., Role of beta1- and alpha2cadrenergic receptor polymorphisms and their combination in heart failure: a case-control study, Eur. J. Heart Fail., 2006, 8, 131–135PubMedCrossRefGoogle Scholar
  10. [10]
    Ranade K., Jorgenson E., Sheu W.H., Pei D., Hsiung C.A., Chiang F.T., Chen Y.D., et al., A polymorphism in the beta1 adrenergic receptor is associated with resting heart rate, Am. J. Hum. Genet., 2002, 70, 935–942PubMedCrossRefGoogle Scholar
  11. [11]
    Attia J., Ioannidis J.P., Thakkinstian A., McEvoy M., Scott R.J., Minelli C., et al., How to use an article about genetic association: B: Are the results of the study valid?, JAMA, 2009, 301, 191–197PubMedCrossRefGoogle Scholar
  12. [12]
    Little J., Higgins J.P., Ioannidis J.P., Moher D., Gagnon F., von Elm E., et al., Strengthening the reporting of genetic association studies (STREGA): an extension of the STROBE Statement, Hum. Genet., 2009, 125, 131–151PubMedCrossRefGoogle Scholar
  13. [13]
    Druzhevskaya A.M., Ahmetov I.I., Astratenkova I.V., Rogozkin V.A., Association of the ACTN3 R577X polymorphism with power athlete status in Russians, Eur. J. Appl. Physiol., 2008, 103, 631–634PubMedCrossRefGoogle Scholar
  14. [14]
    Stephens M., Donnelly P., A comparison of Bayesian methods for haplotype reconstruction from population genotype data, Am. J. Hum. Genet., 2003, 73, 1162–1169PubMedCrossRefGoogle Scholar
  15. [15]
    Stephens M., Smith N., Donnelly P., A new statistical method for haplotype reconstruction from population data, Am. J. Hum. Genet., 2001, 68, 978–989PubMedCrossRefGoogle Scholar
  16. [16]
    Benjamini Y., Yekutieli D., The control of the false discovery rate in multiple testing under dependency, 2001, Ann. Statist., 2001, 29, 1165–1188CrossRefGoogle Scholar
  17. [17]
    Santiago C., Ruiz J.R., Buxens A., Artieda M., Arteta D., González-Freire M., et al., Trp64Arg polymorphism in ADRB3 gene is associated with elite endurance performance, Br. J. Sports Med., 2011, 45, 147–149PubMedCrossRefGoogle Scholar
  18. [18]
    Börjesson M., Magnusson Y., Hjalmarson A., Andersson B., A novel polymorphism in the gene coding for the beta(1)-adrenergic receptor associated with survival in patients with heart failure, Eur. Heart J., 2000, 21, 1853–1858PubMedCrossRefGoogle Scholar
  19. [19]
    Levin M.C., Marullo S., Muntaner O., Andersson B., Magnusson Y., The myocardium-protective Gly-49 variant of the beta 1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation, J. Biol. Chem., 2002, 277, 30429–30435PubMedCrossRefGoogle Scholar
  20. [20]
    Belfer I., Buzas B., Evans C., Hipp H., Phillips G., Taubman J., et al., Haplotype structure of the beta adrenergic receptor genes in US Caucasians and African Americans, Eur. J. Hum. Genet., 2005, 13, 341–351PubMedCrossRefGoogle Scholar
  21. [21]
    Pacanowski M.A., Gong Y., Cooper-Dehoff R.M., Schork N.J., Shriver M.D., Langaee T.Y., et al., Beta-adrenergic receptor gene polymorphisms and beta-blocker treatment outcomes in hypertension, Clin. Pharmacol. Ther., 2008, 84, 715–721PubMedCrossRefGoogle Scholar
  22. [22]
    Johnson J.A., Zineh I., Puckett B.J., McGorray S.P., Yarandi H.N., Pauly D.F., Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol, Clin. Pharmacol. Ther., 2003, 74, 44–52PubMedCrossRefGoogle Scholar
  23. [23]
    Sandilands A.J., Yeo G., Brown M.J., O’shaughnessy K.M., Functional responses of human b-1 adrenoceptors with defined haplotypes for the common 389R>G and 49S>G polymorphisms, Pharmacogenetics, 2004, 14, 343–349PubMedCrossRefGoogle Scholar
  24. [24]
    Freedman N.J., Liggett S.B., Drachman D.E., Pei G., Caron M.G., Lefkowitz R.J., Phosphorylation and desensitization of the human beta 1-adrenergic receptor, J. Biol. Chem., 1995, 270, 17953–17961PubMedCrossRefGoogle Scholar
  25. [25]
    Pei G., Samama P., Lohse M., Wang M., Codina J., Lefkowitz R.J., A constitutively active mutant beta 2-adrenergic receptor is constitutively desensitized and phosphorylated, Proc. Natl. Acad. Sci. U S A, 1994, 91, 2699–270PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Marek Sawczuk
    • 1
  • Agnieszka Maciejewska-Karlowska
    • 1
  • Pawel Cieszczyk
    • 2
  • Aleksandra Zarebska
    • 3
  1. 1.Department of Genetics, Faculty of BiologyUniversity of SzczecinSzczecinPoland
  2. 2.Department of Sports Genetics, Faculty of Physical Culture and Health PromotionUniversity of SzczecinSzczecinPoland
  3. 3.Department of Sport Education, Faculty of Tourism and RecreationAcademy of Physical Education and SportGdanskPoland

Personalised recommendations