Skip to main content

Bioactive content and antioxidant capacity of Cape gooseberry fruit

Abstract

At present, Cape gooseberry (Physalis peruviana) fruit is one of the less used raw materials of plant origin, which can be used for human nutrition. This fruit, as well as alimentary products made of it, were used by healers in folk medicine in the distant past. The aim of this study was to monitor and evaluate the antioxidant capacity of fresh fruit of three Cape gooseberry cultivars ‘Giant’, ‘Golden berry’ and ‘Inka’. Antioxidant capacity was also tested, on the basis of the scavenging effect of reactive oxygen species (ROS) and lipid peroxidation of methanolic extracts made of fresh fruit. These results were further extended and supplemented with determinates of the vitamin C and total phenolic contents. These analyses were made for three consecutive years. The highest values of antioxidant capacity were observed in the ‘Inka’ cultivar (9.31 grams of ascorbic acid equivalents kg−1 of fresh mass). In this cultivar, the obtained results were corroborated also in ROS and the contents of vitamin C and total phenolics. Due to a high antioxidant capacity of this fruit species, the results presented should increase its popularity above all as a promising raw material, which can be used for human nutrition.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Hassanien M.F.R., Physalis peruviana: a rich source of bioactive phytochemicals for functional foods and pharmaceuticals, Food Rev. Int., 2011, 27, 259–273

    Article  CAS  Google Scholar 

  2. [2]

    Tomassini T.C.B., Barbi N.S., Ribeiro I.M., Xavier D.C.D., Genus Physalis — A revision of Withasteroids, Quim. Nova, 2000, 23, 47–57

    Article  CAS  Google Scholar 

  3. [3]

    Valicek P., Utility plants of the tropics and subtropics [Uzitkove rostliny tropu a subtropu], 1st ed., Academia, Prague, 1989, (in Czech)

    Google Scholar 

  4. [4]

    Samla J., Subtropics: Cultivation manual [Subtropy: Pestitelske praktikum], 1st ed., Citrusar, Brno, 1993, (in Czech)

    Google Scholar 

  5. [5]

    Dlouha J., Richter M., Valicek P., Fruit [Ovoce], 1st ed., Aventinum, Prague, 1997, (in Czech)

    Google Scholar 

  6. [6]

    Aruoma O.I., Nutrition and health aspects of free radicals and antioxidants, Food Chem. Toxicol., 1994, 62, 671–683

    Google Scholar 

  7. [7]

    Wang Z., Hsu Ch., Yin M., Antioxidative characteristics of aqueous and ethanol extracts of glossy privat fruit, Food Chem., 2009, 112, 914–918

    Article  CAS  Google Scholar 

  8. [8]

    Rop O., Jurikova T., Sochor J., Mlcek J., Kramarova D., Antioxidant capacity, scavenging radical activity and selected chemical composition of native apple cultivars from Central Europe, J. Food Quality, 2011, 34, 187–194

    Article  CAS  Google Scholar 

  9. [9]

    Drogoudi P.D., Michailidis Z., Pantelidisa G., Peel and flesh antioxidant content and harvest quality characteristics of seven apple cultivars, Sci. Hortic., 2008, 115, 149–153

    Article  CAS  Google Scholar 

  10. [10]

    Wu S.J., Ng L.T., Huang Y.M., Lin D.L., Wang S.S., Huang S.N., et al., Antioxidant activities of Physalis peruviana, Biol. Pharm. Bull., 2005, 28, 963–966

    PubMed  Article  CAS  Google Scholar 

  11. [11]

    Anonymous, Data from Central Institute for Supervising and Testing in Agriculture, 1st ed., UKZUZ, Brno, 2008

  12. [12]

    Barros L., Baptista P., Ferreira I.C.F.R., Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays, Food Chem. Toxicol., 2007, 45, 1731–1737

    PubMed  Article  CAS  Google Scholar 

  13. [13]

    Kim D.O., Neony S.W., Lee C.Y., Antioxidant capacity of phenolic phytochemicals from various cultivars of plums, Food Chem., 2003, 51, 321–326

    Article  Google Scholar 

  14. [14]

    Brand-Williams W., Cuvelier M.E., Verset C., Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol., 1995, 28, 25–30

    Article  CAS  Google Scholar 

  15. [15]

    Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Byrne D.H., Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Compos. Anal., 2006, 19, 669–675

    Article  CAS  Google Scholar 

  16. [16]

    Sulc M., Lachman J., Hamouz K., Orsak M., Dvorak P., Horackova V., Selection and evaluation of methods for determination of antioxidant activity of purple- and red-fleshed potato varieties, Chem. Listy, 2007, 101, 584–591

    CAS  Google Scholar 

  17. [17]

    Rupasinghe V.H.P., Jayasankar S., Lay W., Variation in total phenolic and antioxidant capacity among European plum genotypes, Sci. Hortic., 2006, 108, 243–246

    Article  CAS  Google Scholar 

  18. [18]

    Singleton V.L., Orthofer R., Lamuela-Raventos R.M. Analysis of total phenols and other oxidation substrates and antioxidants by Folin-Ciocalteu reagent, Method. Enzymol., 1999, 299, 152–178

    Article  CAS  Google Scholar 

  19. [19]

    Ghiselli A., Nardini M., Baldi A., Scaccini C., Antioxidant activity of different phenolic fractions separated from an Italian red wine, J. Agr. Food Chem., 1998, 46, 361–367

    Article  CAS  Google Scholar 

  20. [20]

    Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok J.S., Tannenbaum S.R., Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids, Anal. Biochem., 1982, 126, 131–138

    PubMed  Article  CAS  Google Scholar 

  21. [21]

    Beissenhirtz M.K., Kwan R.C., Ko K.M., Renneberg R., Schiller F.W., Liskat F., Comparing an in vitro electrochemical measurement of superoxide scavenging activity with an in vivo assessment of antioxidant potential in Chinese tonifying herbs, Phytother. Res., 2004, 18, 149–153

    PubMed  Article  Google Scholar 

  22. [22]

    Anup S., Shereen R.H., Shivanandappa T., Antioxidant activity of the roots of Decalepis hamiltonii, LWT-Food Sci. Technol., 2006, 36, 1059–1065

    Google Scholar 

  23. [23]

    Miki N., High-performance liquid-chromatographic determination of ascorbic acid in tomato products, J. Jpn. Soc. Food Sci., 1981, 28, 264–268

    Article  CAS  Google Scholar 

  24. [24]

    Snedecor G.W., Cochran W.G., Statistical Methods, 7th ed., Iowa State University, Ames, 1967

    Google Scholar 

  25. [25]

    Tetera V., Fruit of the White Carpathians [Ovoce Bilych Karpat], 1st ed., CSOP, Veseli nad Moravou, 2006, (in Czech)

    Google Scholar 

  26. [26]

    Kovacikova E., Vojtassakova A., Holcikova K., Simonova E., Food charts [Potravinove tabulky], 1st ed., VUP, Bratislava, 1997, (in Slovak)

    Google Scholar 

  27. [27]

    Yilmaz K.U., Ercisli S., Zengin Y., Sengul M., Kafkas E.Y., Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties, Food Chem., 2009, 114, 408–412

    Article  CAS  Google Scholar 

  28. [28]

    Ercisli S., Esitken A., Fruit characteristics of native rose hip (Rosa spp.) selections from the Erzurum province of Turkey, New Zeal. J. Crop Hort., 2004, 32, 51–53

    Article  Google Scholar 

  29. [29]

    Moyer R.A., Hummer K.E., Finn C.E., Frei B., Wrostland R.E., Antocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes, J. Agr. Food Chem., 2002, 50, 519–525

    Article  CAS  Google Scholar 

  30. [30]

    Rop O., Jurikova T., Mlcek J., Kramarova D., Sengee Z., Antioxidant activity and selected nutritional values of plums (Prunus domestica L.) typical of the White Carpathian Mountains, Sci. Hortic., 2009, 122, 545–549

    Article  CAS  Google Scholar 

  31. [31]

    Schmitz-Eiberger M., Weber V., Treutter D., Baab G., Lorenz J., Bioactive components in fruits from different apple varieties, J. Appl. Bot., 2003, 77, 167–171

    CAS  Google Scholar 

  32. [32]

    Jung H.A., Kim A.R., Chung H.Y., Choi J.S., In vitro activity of some selected Prunus species in Korea, Arch. Pharm. Res., 2002, 25, 865–872

    PubMed  Article  CAS  Google Scholar 

  33. [33]

    Usenik V., Fabcic J., Stampar F., Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.), Food Chem., 2008, 107, 185–192

    Article  CAS  Google Scholar 

  34. [34]

    Kulling E., Radel H.M., Chokeberry — A Review on the characteristics components and potential health effects, Planta Med., 2008, 74, 1625–1634

    PubMed  Article  CAS  Google Scholar 

  35. [35]

    Jurikova T., Rop O., Mlcek J., Sochor J., Balla S., Szekeres L., et al., Phenolic profile of edible honeysuckle berries (Genus Lonicera) and their biological effects, Molecules, 2012, 17, 61–79

    Article  CAS  Google Scholar 

  36. [36]

    Paksi A.M., Kassai T., Lugasi A., Ombodi A., Dimeny J., Physalis peruvina L. an alternative crop for small scale frams, Cereal Res. Commun., 2007, 35, 877–880

    Article  Google Scholar 

  37. [37]

    Kyzlink V., Principles of food preservation, 1st ed., Elsevier, Amsterdam, 1990

    Google Scholar 

  38. [38]

    Velisek J., Chemie potravin, 1st ed., OSSIS, Tabor, 2002, (in Czech)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Otakar Rop.

About this article

Cite this article

Rop, O., Mlcek, J., Jurikova, T. et al. Bioactive content and antioxidant capacity of Cape gooseberry fruit. cent.eur.j.biol. 7, 672–679 (2012). https://doi.org/10.2478/s11535-012-0063-y

Download citation

Keywords

  • Physalis peruviana
  • Phenolics, flavonoids
  • Ascorbic acid
  • Reactive oxygen species
  • Lipid peroxidation