Skip to main content
Log in

Effect of acute heat stress on rat adrenal medulla — a morphological and ultrastructural study

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Isolated rat adrenal medulla was analyzed by light and electron microscope after an acute (60 min) exposure to high ambient temperature (38°C). Under these conditions there was a significant rise in plasma adrenaline and noradrenaline. Stereological investigation by light microscopy showed a significant decrease in volume density of cells and an increase in the interstitium. At the ultrastructural level, the profile area of cells, nuclei and cytoplasm of adrenaline cells were significantly decreased. After the heat stress numbers of resting granules in adre naline and noradrenaline cells were significantly reduced, while the numbers of altered granules and empty containers in both types of adrenomedullar cells were significantly increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diaz-Flores L., Gutierrez R., Varela H., Valladares F., Alvarez-Arguelles H., Borges R., Histogenesis and morphofunctional characteristics of chromaffin cells, Acta Physiol., 2008, 192, 145–163

    Article  CAS  Google Scholar 

  2. Koko V., Djordjevic J., Cvijic G., Davidovic V., Effect of acute heat stress on rat adrenal glands: a morphological and stereological study, J. Exp. Biol., 2004, 207, 4225–4230

    Article  PubMed  Google Scholar 

  3. Souvatzoglou A., The Sympathoadrenal System: Integrative Regulation of the Cortical and the Medullary Adrenal Functions, In: Linos D., van Heerden J.A. (Eds.), Adrenal Glands: Diagnostic apsects and surgical therapy, Springer-Verlag, Berlin, 2005

    Google Scholar 

  4. Tomlinson A., Coupland R.E., The innervation of the adrenal gland. IV. Innervation of the rat adrenal medulla from birth to old age. A descriptive and quantitative morphometric and biochemical study of the innervation of chromaffin cells and adrenal medullary neurons in Wistar rats, J. Anat., 1990, 169, 209–236

    PubMed  CAS  Google Scholar 

  5. Kvetnansky R., Sabban E.L., Palkovits M., Catecholaminergic systems in stress: structural and molecular genetic approaches, Physiol. Rev., 2009, 89, 535–606

    Article  PubMed  CAS  Google Scholar 

  6. Collins K.J., Weiner J.S., Endocrinological aspects of exposure to high environmental temperatures, Physiol. Rev., 1968, 48, 785–839

    PubMed  CAS  Google Scholar 

  7. Fukuhara K., Kvetnansky R., Weise V.K., Ohara H., Yoneda R., Goldstein D.S., et al., Effects of continuous and intermittent cold (SART) stress on sympathoadrenal system activity in rats, J. Neuroendocrinol., 1996, 8, 65–72

    Article  PubMed  CAS  Google Scholar 

  8. Gundersen H.J.G., The nucleator, J. Microsc., 1988, 151, 3–21

    Article  PubMed  CAS  Google Scholar 

  9. Bini G., Hagbarth K.E., Hynninen P., Wallin B.G., Regional similarities and differences in thermoregulatory vaso- and sudomotor tone, J. Physiol., 1980, 306, 553–565

    PubMed  CAS  Google Scholar 

  10. Massett M.P., Johnson D.G., Kregel K.C., Cardiovascular and sympathoadrenal responses to heat stress following water deprivation in rats, Am. J. Physiol., 1996, 270, R652–659

    PubMed  CAS  Google Scholar 

  11. Powers S.K., Howley E.T., Cox R., A differential catecholamine response during prolonged exercise and passive heating, Med. Sci. Sports Exerc., 1982, 14, 435–439

    Article  PubMed  CAS  Google Scholar 

  12. Brenner I.K., Zamecnik J., Shek P.N., Shephard R.J., The impact of heat exposure and repeated exercise on circulating stress hormones, Eur J Appl Physiol Occup Physiol, 1997, 76, 445–454

    Article  PubMed  CAS  Google Scholar 

  13. Barrand M.A., Dauncey M.J., Ingram D.L., Changes in plasma noradrenaline and adrenaline associated with central and peripheral thermal stimuli in the pig, J. Physiol., 1981, 316, 139–152

    PubMed  CAS  Google Scholar 

  14. Robertshaw D., Whittow G.C., The effect of hyperthermia and localized heating of the anterior hypothalamus on the sympatho-adrenal system of the ox (Bos taurus), J. Physiol., 1966, 187, 351–360

    PubMed  CAS  Google Scholar 

  15. Cure M., Plasma corticosterone response in continuous versus discontinuous chronic heat exposure in rat, Physiology & Behavior, 1989, 45, 1117–1122

    Article  CAS  Google Scholar 

  16. Vlad M., Ionescu N., Ispas A.T., Giuvarasteanu I., Ungureanu E., Stoica C., Morphological changes during acute experimental short-term hyperthermia, Rom. J. Morphol. Embryol., 2010, 51, 739–744

    PubMed  CAS  Google Scholar 

  17. Koldysheva E.V., Lushnikova E.L., Ultrastructural reorganization of rat adrenal cortex after whole body hyperthermia, Bull. Exp. Biol. Med., 2008, 145, 650–655

    Article  PubMed  CAS  Google Scholar 

  18. Koko V., Djordjevic J., Cvijic G., Davidovic V., Effect of the acute heat stress on the rat pituitary gland. Morphological and stereological study, J. Therm. Biol., 2006, 31, 394–399

    Article  Google Scholar 

  19. Weibel E.R., Kistler G.S., Scherle W.F., Practical stereological methods for morphometric cytology, J. Cell Biol., 1966, 30, 23–38

    Article  PubMed  CAS  Google Scholar 

  20. Folkow B., Von Euler U.S., Selective activation of noradrenaline and adrenaline producing cells in the cat’s adrenal gland by hypothalamic stimulation, Circ. Res., 1954, 2, 191–195

    PubMed  CAS  Google Scholar 

  21. Aherne W.A., Dunnill M.S., (Eds.), Morphometry, Edward Arnold Ltd., London, 1982

    Google Scholar 

  22. Coupland R.E., Pyper A.S., Hopwood D., A Method for Differentiating between Noradrenaline- and Adrenaline-storing Cells in the Light and Electron Microscope, Nature, 1964, 201, 1240–1242

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi S., Coupland R.E., Morphological aspects of chromaffin tissue: the differential fixation of adrenaline and noradrenaline, J. Anat., 1993, 183, 223–235

    PubMed  CAS  Google Scholar 

  24. Jezova D., Kvetnansky R., Vigas M., Sex differences in endocrine response to hyperthermia in sauna, Acta Physiol. Scand., 1994, 150, 293–298

    Article  PubMed  CAS  Google Scholar 

  25. Crivellato E., Nico B., Mallardi F., Beltrami C.A., Ribatti D., Piecemeal degranulation as a general secretory mechanism?, Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2003, 274, 778–784

    Article  PubMed  Google Scholar 

  26. Crivellato E., Belloni A., Nico B., Nussdorfer G.G., Ribatti D., In vivo administered reserpine increases piecemeal degranulation in rat adrenal chromaffin cells, Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2006, 288, 286–291

    PubMed  Google Scholar 

  27. Moller N., Beckwith R., Butler P.C., Christensen N.J., Orskov H., Alberti K.G., Metabolic and hormonal responses to exogenous hyperthermia in man, Clin. Endocrinol. (Oxf.), 1989, 30, 651–660

    Article  CAS  Google Scholar 

  28. Sriramachari S., Heat hyperpyrexia: time to act, Indian J. Med. Res., 2004, 119, 7–10

    Google Scholar 

  29. Vaha-Eskeli K.K., Erkkola R.U., Scheinin M., Seppanen A., Effects of short-term thermal stress on plasma catecholamine concentrations and plasma renin activity in pregnant and nonpregnant women, Am. J. Obstet. Gynecol., 1992, 167, 785–789

    PubMed  CAS  Google Scholar 

  30. Axelrod J., Purification and properties of phenylethanolamine-N-methyl transferase, J. Biol. Chem., 1962, 237, 1657–1660

    PubMed  CAS  Google Scholar 

  31. Sabban E.L., Catecholamines in stress: molecular mechanisms of gene expression, Endocr. Regul., 2007, 41, 61–73

    PubMed  CAS  Google Scholar 

  32. Wurtman R.J., Stress and the adrenocortical control of epinephrine synthesis, Metabolism., 2002, 51, 11–14

    Article  PubMed  CAS  Google Scholar 

  33. Gisolfi C.V., Matthes R.D., Kregel K.C., Oppliger R., Splanchnic sympathetic nerve activity and circulating catecholamines in the hyperthermic rat, J. Appl. Physiol., 1991, 70, 1821–1826

    PubMed  CAS  Google Scholar 

  34. Kvetnansky R., Pacak K., Sabban E.L., Kopin I.J., Goldstein D.S., Stressor specificity of peripheral catecholaminergic activation, Adv. Pharmacol., 1998, 42, 556–560

    Article  PubMed  CAS  Google Scholar 

  35. Francesconi R.P., Endocrinological responses to exercise in stressful environments, Exerc. Sport Sci. Rev., 1988, 16, 255–284

    Article  PubMed  CAS  Google Scholar 

  36. Yokotani K., Okada S., Nakamura K., Yamaguchi-Shima N., Shimizu T., Arai J., et al., Brain prostanoid TP receptor-mediated adrenal noradrenaline secretion and EP3 receptor-mediated sympathetic noradrenaline release in rats, Eur. J. Pharmacol., 2005, 512, 29–35

    Article  PubMed  CAS  Google Scholar 

  37. Pugachev M.K., Changes in the dimensions of cells and their nuclei in the adrenal medullary substance of white rats during acute overheating, Tsitologiia, 1980, 22, 1368–1371

    PubMed  CAS  Google Scholar 

  38. Van de Kar L.D., Blair M.L., Forebrain pathways mediating stress-induced hormone secretion, Front. Neuroendocrinol., 1999, 20, 1–48

    Article  PubMed  Google Scholar 

  39. Kvetnansky R., Sun C.L., Lake C.R., Thoa N., Torda T., Kopin I.J., Effect of handling and forced immobilization on rat plasma levels of epinephrine, norepinephrine, and dopamine-beta-hydroxylase, Endocrinology, 1978, 103, 1868–1874

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Petrovic-Kosanovic.

About this article

Cite this article

Petrovic-Kosanovic, D., Milosevic, M.C., Budec, M. et al. Effect of acute heat stress on rat adrenal medulla — a morphological and ultrastructural study. cent.eur.j.biol. 7, 603–610 (2012). https://doi.org/10.2478/s11535-012-0044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-012-0044-1

Keywords

Navigation