Central European Journal of Biology

, Volume 7, Issue 3, pp 559–568 | Cite as

In vivo and in vitro antioxidant effects of three Veronica species

  • Jelena Živković
  • Tatjana Ćebović
  • Zoran Maksimović
Research Article

Abstract

The aim of the present study was to examine the antioxidant activity of three Veronica species (Plantaginaceae). The antioxidant potential of various extracts obtained from aerial flowering parts was evaluated by DPPH-free (1,1-diphenyl-2-picrylhydrazyl-free) radical scavenging activity and ferric-reducing antioxidant power assays. Considerable antioxidant activity was observed in the plant samples (FRAP values ranged from 0.97 to 4.85 mmol Fe2+/g, and DPPH IC50 values from 12.58 to 66.34 µg/ml); however, these levels were lower than the activity of the control compound butylated hydroxytoluene (BHT) (FRAP: 10.58 mmol Fe2+/g; DPPH IC50: 9.57 µg/ml). Also, the in vivo antioxidant effects were evaluated in several hepatic antioxidant systems in rats (activities of glutathione peroxidase, glutathione reductase, peroxidase, catalase, xanthine oxidase, glutathione content and level of thiobarbituric acid reactive substances) after treatment with different Veronica extracts, or in combination with carbon tetrachloride (CCl4). Pretreatment with 100 mg/kg b.w. of Veronica extracts inhibited CCl4-induced liver injury by decreasing TBA-RS level, increasing GSH content, and bringing the activities of CAT and Px to control levels. The present study suggests that the extracts analyzed could protect the liver cells from CCl4-induced liver damage by their antioxidative effect on hepatocytes.

Keywords

Antioxidant activity Veronica species Carbon tetrachloride Lipid peroxidation Biochemical parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J., Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 2007, 39, 44–83PubMedCrossRefGoogle Scholar
  2. [2]
    Aroma O.I., Free radicals, oxidative stress and antioxidants in human health and disease, J. Amer. Oil Chem. Soc., 1998, 75, 199–212CrossRefGoogle Scholar
  3. [3]
    Datta K., Sinha S., Chattopadhyay P., Reactive oxygen species in health and disease, The Natl. Med. J. India, 2000, 13, 304–310Google Scholar
  4. [4]
    Dragland S., Senoo H., Wake K., Holte K., Blomhoff R., Several culinary and medicinal herbs are important sources of dietary antioxidants, J. Nutr., 2003, 20, 1286–1290Google Scholar
  5. [5]
    Valyova M., Hadjimitova V., Stoyanov S., Ganeva Y., Petrov T., Petrov I., Free radicals scavenging activity of extracts from Bulgarian Veronica officinalis L. and GC-MS analysis of ethanol extract, Inter. J. of Aesth. & Antiag. Med., 2009, 2(1)Google Scholar
  6. [6]
    Vitaglione P., Marisco F., Caporaso N., Fogliano V., Dietary antioxidant compound and liver health, Crit. Rev. Food Sci. Nutr., 2004, 44, 575–586PubMedCrossRefGoogle Scholar
  7. [7]
    Taskova R.M., Kokubin T., Ryan K.G., Gamock-Jones P.J., Jensen S.R., Phenylethanoid and iridoid glycosides in the New Zealand Snow Hebes (Veronica, Plantaginaceae), Chem. Pharm. Bull., 2010, 58, 703–711PubMedCrossRefGoogle Scholar
  8. [8]
    Harput U.S., Genc Y., Khan N., Saracoglu I., Radical scavenging effects of different Veronica species, Rec. Nat. Prod., 2011, 5, 100–107Google Scholar
  9. [9]
    Küpeli E., Harput U.S., Varel M., Yesilada E., Saracogly I., Bioassay guided isolation of iridoid glucosides with antionociceptive and anti-inflammatory activities from Veronica anagallis-aquatica L., J. Ethnopharmacol., 2005, 102, 170–176PubMedCrossRefGoogle Scholar
  10. [10]
    Hong D.Y., Fischer M.A., Veronica, In: Zheng-Yi W., Raven P.H. (Eds.), Flora of China, Vol. 18, Science Press, Beijing, 1998Google Scholar
  11. [11]
    Velioglu Y.S., Mazza G., Gao L., Oomah B.D., Antioxidant activity and total phenolics in selected fruits, vegetables and grain products, J. Agric. Food Chem., 1998, 46, 4113–4117CrossRefGoogle Scholar
  12. [12]
    Pellegrini N., Serafini M., Colombi B., Del Rio D., Salvatore S., Bianchi M., et al., Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays, J. Nutr., 2003, 133, 2812–2819PubMedGoogle Scholar
  13. [13]
    Cuendet M., Hostettmann K., Potterat O., Dyatmiko W., Iridoid glucosides with free radical scavenging properties from Fagraea blumei, Helv. Chim. Acta, 1997, 80, 1144–1152CrossRefGoogle Scholar
  14. [14]
    Wood E.J., Practical biochemistry for colleges, 1st ed., Pergamon Press, Oxford, 1989Google Scholar
  15. [15]
    Bergmayer U.H., Methods of enzymatic analysis, 1st ed., Verlag Chemie, Weinheim, 1970Google Scholar
  16. [16]
    Beers R.F.J., Sizer J.W., Spectrophotometric method for measuring of breakdown of hydrogen peroxide by catalase, J. Biol. Chem., 1950, 195, 133–140Google Scholar
  17. [17]
    Simon L.M., Fatrai Z., Jonas D.J., Matkovics B., Study of metabolism enzymes during the development of Phaseolus vulgaris, Biochem. Physiol. Pfl., 1974, 166, 389–393Google Scholar
  18. [18]
    Beuthler E., Duron O., Kelly B., Improved methods for the determination of blood glutathione, J. Lab. Clin. Med., 1983, 61, 882–889Google Scholar
  19. [19]
    Goldberg D.M., Spooner R.J., Glutathione reductase. In: Bergmayer H.U. (Ed) Methods of Enzymatic Analysis, Vol. 3, Weinheim, Basel, 1983Google Scholar
  20. [20]
    Beutler E., Glutathione reductase, glutathione peroxidase, catalase, glutathione, In: Beutler E. (Ed.), Red cell metabolism: a manual of biochemical methods, Grune and Stratton, New York, 1984Google Scholar
  21. [21]
    Buege A.L., Aust D.S., Microsomal lipid peroxidation. In: Fleisher S., Parker L. (Eds), Methods in Enzymology, Academic Press, New York, 1978Google Scholar
  22. [22]
    Yugoslav Pharmacopoeia, 5th ed., Federal Institute for Public Health & Contemporary Administration, Belgrade, 2000Google Scholar
  23. [23]
    Bravo L., Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance, Nutr. Rev., 1998, 56, 317–333PubMedCrossRefGoogle Scholar
  24. [24]
    Moure A., Cruz J.M., Franco D., Dominguez J.M., Siherio J., Dominguez H., Natural antioxidants from residual sources, Food Chem., 2001, 72, 145–171CrossRefGoogle Scholar
  25. [25]
    Zou Y., Lu Y., Wei D., Antioxidant activity of flavonoid-rich extract of Hypericum perforatum L. in vitro, J. Agric. Food Chem., 2004, 52, 5032–5039PubMedCrossRefGoogle Scholar
  26. [26]
    Meir S., Kanner J., Akiri B., Hadas S.P., Determination and involvement of aqueous reducing compounds in oxidative defence systems of various senescing leaves, J. Agric. Food Chem., 1995, 43, 1813–1815CrossRefGoogle Scholar
  27. [27]
    Phipps S.M., Sharaf M.H.M., Butterweck V., Assessing antioxidant activity in botanicals and other dietary supplements, Pharmacopoeial Forum, 2007, 33, 810–814Google Scholar
  28. [28]
    Ghimire B.K., Seong E.S., Kim E.H., Ghimeray A.K., Yu C.Y., Ghimire B.K., et al., A comparative evaluation of the antioxidant activity of some medicinal plants populary used in Nepal, J. Med. Plant Res., 2011, 5, 1884–1891Google Scholar
  29. [29]
    Ordoñez A.A.L., Gomez J.D., Vattuone M.A., Isla M.I., Antioxidant activities of Sechium edule (Jacq.) Swartz extracts, Food Chem., 2006, 97, 452–458CrossRefGoogle Scholar
  30. [30]
    Chiou W.F., Lin L.C., Chen C.F., The antioxidant and free radical scavenging properties of acteoside, Chin. Pharm. J. (Taipei), 2003, 55, 347–353Google Scholar
  31. [31]
    Kwak J.H., Kim H.J., Lee K.H., Kang S.C., Zee O.P., Antioxidative iridoid glycosides and phenolic compounds from Veronica peregrina, Arch. Pharm. Res., 2009, 32, 207–213PubMedCrossRefGoogle Scholar
  32. [32]
    Kaurinović B., Popović M., Vlaisavljević S., Rašeta M., Antioxidant activities of Melittitis melissophyllum L. (Lamiaceae), Molecules, 2011, 16, 3152–3167PubMedCrossRefGoogle Scholar
  33. [33]
    Aleynik S.I., Leo M.A., Ma X., Aleynik M.K., Lieber C.S., Polyenylphosphatidylcholine prevent carbon tetrachloride-induced lipid peroxidation while it attenuates liver fibrosis, J. Hepatol., 1997, 27, 554–561PubMedCrossRefGoogle Scholar
  34. [34]
    Chung H.Y., Baek B.S., Song S.H., Kim M.S., Huh J.I., Shim K.H., et al., Xanthine dehydrogenase/xanthine oxidase and oxidative stress, Age, 1997, 20, 127–140CrossRefGoogle Scholar
  35. [35]
    Ćebović T., Spasić S., Popović M., Borota J., Leposavić G., The European mistletoe (Viscum album L.) grown on plums extract inhibits CCl4-induced liver damage in rats, Fresen. Environ. Bull., 2006, 15, 393–400Google Scholar
  36. [36]
    Preethi K.C., Kuttan G., Kuttan R., Antioxidant potential of an extract of Calendula officinalis flowers in vitro and in vivo, Pharmaceut. Biol., 2006, 44, 691–697CrossRefGoogle Scholar
  37. [37]
    Sandhir R., Gill K.D., Hepatoprotective effects of LIV-52 on ethanol induced liver damage in rats, Indian J. Exp. Biol., 1999, 37, 762–766PubMedGoogle Scholar
  38. [38]
    Tirmenstein M.A., Nicholls-Grzemski F.A., Zhang G.J., Fariss M.W., Glutathione depletion and the production of reactive oxygen species in isolated hepatocyte suspensions, Chem. Biol. Interact., 2000, 127, 201–217PubMedCrossRefGoogle Scholar
  39. [39]
    Kulinsky V.I., Kolesnichenko L.S., The glutathione system. II. Other enzymes, thiol-disulfide metabolism, inflammation, and immunity, functions, Biochem. (Mosc.) Suppl. Ser. B: Biomed. Chem., 2009, 3, 211–220CrossRefGoogle Scholar
  40. [40]
    Recknagel R.O., Glende J.E.A., Ugazio G., Mechanisms of carbon tetrachloride toxicity, Pharmacol. & Therapeut., 1989, 43, 139–154Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Jelena Živković
    • 1
  • Tatjana Ćebović
    • 2
  • Zoran Maksimović
    • 3
  1. 1.Institute for Medicinal Plant Research “Dr Josif Pančić”BelgradeSerbia
  2. 2.Department of Biochemistry, School of MedicineUniversity of Novi SadNovi SadSerbia
  3. 3.Department of Pharmacognosy, School of PharmacyUniversity of BelgradeBelgradeSerbia

Personalised recommendations