Skip to main content
Log in

Biologically active secondary metabolites from Actinomycetes

  • Review Article
  • Published:
Central European Journal of Biology

Abstract

Secondary metabolites obtained from Actinomycetales provide a potential source of many novel compounds with antibacterial, antitumour, antifungal, antiviral, antiparasitic and other properties. The majority of these compounds are widely used as medicines for combating multidrug-resistant Gram-positive and Gram-negative bacterial strains. Members of the genus Streptomyces are profile producers of previously-known secondary metabolites. Actinomycetes have been isolated from terrestrial soils, from the rhizospheres of plant roots, and recently from marine sediments. This review demonstrates the diversity of secondary metabolites produced by actinomycete strains with respect to their chemical structure, biological activity and origin. On the basis of this diversity, this review concludes that the discovery of new bioactive compounds will continue to pose a great challenge for scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demain A.L., Sanchez S., Microbial drug discovery: 80 years of progress, J. Antibiot., 2009, 62, 5–16

    Article  PubMed  CAS  Google Scholar 

  2. Donadio S., Monciardini P., Alduina R., Mazza P., Chiocchini C., Cavaletti L., et al., Microbial technologies for the discovery of novel bioactive metabolites, J. Biotechnol., 2002, 99, 187–198

    Article  PubMed  CAS  Google Scholar 

  3. Bérdy J., Bioactive microbial metabolites, J. Antibiot., 2005, 58, 1–26

    Article  PubMed  Google Scholar 

  4. Lam K.S., New aspects of natural products in drug discovery, Trends in Microbiol., 2007, 15, 279–289

    Article  CAS  Google Scholar 

  5. Jensen P.R., Mincer T.J., Williams P.G., Fenical W., Marine actinomycete diversity and natural product discovery, Antonie van Leeuwenhoek, 2005, 87, 43–48

    Article  PubMed  CAS  Google Scholar 

  6. Bull A.T., Stach J.E., Marine actinobacteria: New opportunities for natural product search and discovery, Trends Microbiol., 2007, 15, 491–499

    Article  PubMed  CAS  Google Scholar 

  7. Pimentel-Elardo S.M., Kozytska S., Bugni T.S., Ireland Ch.M., Moll H., Hentschel U., Anti-Parastic Compounds from Streptomyces sp. Strains Isolated from Mediterranean Sponges, Mar. Drugs, 2010, 8, 373–380

    Article  PubMed  CAS  Google Scholar 

  8. Fenical W., Jensen P.R., Developing a new resource for drug discovery: Marine actinomycetebacteria, Nat. Chem. Bol., 2006, 2, 666–673

    Article  CAS  Google Scholar 

  9. Penesyan A., Kjelleberg S., Egan S., Development of Novel Drugs from Marine Surface Associated Microorganisms, Mar. Drugs, 2010, 8, 438–459

    Article  PubMed  CAS  Google Scholar 

  10. Blunt J.W., Copp B., Munro M.H., Northcote P.T., Prinsep M.R., Marine natural products, Nat. Prod. Rep., 2010, 27, 165–237

    Article  PubMed  CAS  Google Scholar 

  11. Bhatnagar I., Se-Kwon K., Immense of Excellence: Marine Microbial Bioactive Compounds, Mar. Drugs, 2010, 8, 2673–2701

    Article  PubMed  CAS  Google Scholar 

  12. Simmons T.L., Andrianasolo E., McPhail K., Flatt P., Gerwick W.H., Marine natural products as anticancer drugs, Mol. Canc. Ther., 2005, 4, 333–342

    CAS  Google Scholar 

  13. Bentley S.D., Chater K.F., Cerdeño-Tárraga A.M., Challis G.L., Thomson N.R., James K.D., et al., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, 2002, 417, 141–147

    Article  PubMed  Google Scholar 

  14. Watve M.G., Tickoo R., Jog M.M., Bhole B.D., How many antibiotics are produced by the genus Streptomyces?, Arch. Microbiol., 2001, 176, 386–390

    Article  PubMed  CAS  Google Scholar 

  15. Ruiz B.R., Forero A., Garcia-Huante Y., Romero A., Sánchez M., Rocha D., et al., Production of microbial secondary metabolites: Regulation by the carbon source, Crit. Rev. Microbiol., 2010, 36, 146–167

    Article  PubMed  CAS  Google Scholar 

  16. Singh M.P., Greenstein M., Antibacterial leads from microbial natural products discovery, Curr. Opin. Drug Discov. Develop., 2000, 3, 167–176

    CAS  Google Scholar 

  17. Demain A.L., Vaishnav P., Involvement of nitrogencontaining compounds in β-lactam biosynthesis and its control, Critical Rev. Biotechnol., 2006, 26, 67–82

    Article  CAS  Google Scholar 

  18. Challis G.L., Hopwood D.A., Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species, PNAS, 2003, 100, 14555–14561

    Article  PubMed  CAS  Google Scholar 

  19. Hopwood D.A., Streptomyces In Nature and Medicine. The antibiotic makers, Oxford University Press, 2007

  20. Duggar B.M., Aureomycin: a product of the continuing search for new antibiotics, Ann. N. Y. Acad. Sc., 1948, 51, 177–181

    Article  CAS  Google Scholar 

  21. Cockerill F.R., Wikler M.A., Bush K., Dudley M.N., Eliopoulos G.M., Hardy D.J. et al., Performance Standards for Antimicrobial Susceptibility testing; Twentieth Informational Supplement, Clinical and Laboratory Standards Institute, 2010

  22. Schatz A., Bugie E., Waksman S.A., Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria, Proc. Soc. Exp. Biol. Med., 1944, 55, 66–69

    CAS  Google Scholar 

  23. Himbindu M., Annapurna J., Optimization of nutritional requirements for gentamicin production by Micromonospora echinospora, Ind. J. Exper. Biol., 2006, 44, 842–848

    Google Scholar 

  24. Borodina I., Schöller Ch., Eliason A., Nielsen J., Metabolic Network Analysis of Streptomyces tenebrarius, a Streptomyces Species with an Active Entner-Doudoroff Pathway, Appl. Environ. Microbiol., 2005, 71, 2294–2302

    Article  PubMed  CAS  Google Scholar 

  25. Waksman S.A., Lechevalier H.A., Neomycin, a new antibiotic against streptomycin - resistant bacteria, including tuberculosis organisms, Science, 1949, 109, 305–307

    Article  PubMed  CAS  Google Scholar 

  26. McCormick M.H., Stark W.M., Pittenger G.E., McGuire J.M., Vancomycin, a new antibiotic. I. Chemical and biologic properties, Antibiot. Annu., 1956, 606, 1955–1956

    Google Scholar 

  27. Parenti F., Beretta G., Berti M., Arioli V., Teichomycin, New antibiotics from Actinoplanes teichomyceticus, nov. sp., 1. Description of the producer strain, fermentation studies and biological properties, J. Antibiot., 1978, 31, 276–281

    Article  PubMed  CAS  Google Scholar 

  28. McGuire J.M., Bunch R.L., Anderson R.C., Boaz H.E., Flynn E.H., Powell H.M., et al., “Ilotycin” a new antibiotic, Antibiot. Chemother., 1952, 2, 281–283

    CAS  Google Scholar 

  29. Hazen E.L.; Brown R. Fungicidin, an antibiotic produced by a soil actinomycete. Proc. Soc. Exp. Biol. Med., 1951, 76, 93–97

    PubMed  CAS  Google Scholar 

  30. Kirst H.A., Macrolide antibiotics in food-animal health, Expert Opin. Investig. Drugs, 1997, 6, 103–118

    Article  PubMed  CAS  Google Scholar 

  31. Hendlin D., Stapley E.O., Jackson M., Wallick H., Miller A.K., Wolf F.J., et al., Phosphonomycin, a new antibiotic produced by strains of Streptomyces, Science, 1969, 166, 122–123

    Article  PubMed  CAS  Google Scholar 

  32. Nett M., Ikeda H., Moore B.S., Genomic basis for natural product biosynthetic diversity in the actinomycetes, Nat. Prod. Rep., 2009, 26, 1362–1384

    Article  PubMed  CAS  Google Scholar 

  33. Bertasso M., Holzen Kämpfer M., Zeeck A., Dall’Antonia F., Fiedler H.P., Bagremycin A and B, Novel Antibiotics from Streptomyces spTü 4128, J. Antibiot., 2001, 54, 730–736

    Article  PubMed  CAS  Google Scholar 

  34. Newman, D.J., Cragg, G.M., Natural products as sources of new drugs over the last 25 years, J. Nat. Prod., 2007, 70, 461–477

    Article  PubMed  CAS  Google Scholar 

  35. Demain A.L. History of Industrial Biotechnology. Industrial Biotechnology: Sustainable Growth and Economic Success, Wiley-VCH Verlag GmbH & Co. KGaA, 2010

  36. Garcia-Mendoza C., Studies on the mode of action of etamycin (Viridogrisein), Biochim. Biophys. Acta., 1965, 97, 394–396

    Article  PubMed  CAS  Google Scholar 

  37. Haste N.M., Perera V.R., Maloney K.N., Tran D.N., Jensen P., Fenical W., Nizet V., et al., Activity of the streptogramin antibiotic etamycin against methicillin-resistant Staphylococcus aureus, J. Antibiot., 2010, 63, 219–224

    Article  PubMed  CAS  Google Scholar 

  38. Kitani S., Yamauchi T., Fukshima E., Kwon Lee Ch., Ningsih F., Kinoshita H., et al., Characterization of varM Encoding Type II ABC Transporter in Streptomyces Virginiae, a Virginiamycin M1 Producer, Actinomycetologica, 2010, 24, 51–57

    Article  CAS  Google Scholar 

  39. Metzger R., Bonatti H., Sawyer R., Future trends in the treatment of serious gram-positive infections, Drugs Today (Barc), 2009, 45, 33–45

    Article  CAS  Google Scholar 

  40. Balz R.H., Miao V., Wrigley S.K., Natural products to drugs: daptomycin and related lipopeptide antibiotics, Nat. Prod. Rep., 2005, 22, 717–741

    Article  CAS  Google Scholar 

  41. Miao V., Coëffet-LeGal M., Brian P., Brost R., Penn J., Whiting A., et al., Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry, Microbiology, 2005, 151, 1507–1523

    Article  PubMed  CAS  Google Scholar 

  42. Nicolaou K.C., Tria G.S., Edmonds D.J., Kar M., Total Syntheses of (±)-Platencin and (−)-Platencin, J. Am. Chem. Soc., 2009, 131, 15909–15917

    Article  PubMed  CAS  Google Scholar 

  43. Junker B., Walker A., Hesse M., Lester M., Christensen J., Connors N., Actinomycetes scaleup for the production of antibacterial, nocathiacin, Biotechnol.Prog., 2009, 25, 176–188

    Article  PubMed  CAS  Google Scholar 

  44. Zhang C., Zink DL., Ushio M., Burgess B., Onishi R., Masurekar P., et al., Isolation, structure, and antibacterial activity of thiazomycin A, a potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa, Bioorg. Med. Chem., 2008, 16, 8818–8823

    Article  PubMed  CAS  Google Scholar 

  45. Singh SB., Occi J., Jayasuriya H., Herath K., Motyl M., Dorso K., et al., Antibacterial evaluations of thiazomycin- a potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa, J. Antibiot., 2007, 60, 565–71

    Article  PubMed  CAS  Google Scholar 

  46. Solecka J., Rajnisz A., Laudy A.E., A novel isoquinoline alkaloid, DD-carbxypeptidase inhibitor, with antibacterial aitvity isolated from Streptomyces sp. 8812. Part I: Taxonomy, isolation and biological activities, J. Antibiot., 2009, 62, 575–580

    Article  PubMed  CAS  Google Scholar 

  47. Solecka J., Sitkowski J., Bocian W., Kawęcki R., Kozerski L., A novel isoquinoline alkaloid, DD-carbxypeptidase inhibitor, with antibacterial activity isolated from Streptomyces sp. 8812. Part II: Physicochemical properties and structure elucidation, J. Antibiot., 2009, 62, 581–585

    Article  PubMed  CAS  Google Scholar 

  48. Hashizume H.; Adachi H.; Igarashi M.; Nishimura Y.; Akamats Y. Biological activities of pargamicin A, a novel cyclic peptide antibiotic from Amycolatopsis sp., J. Antibiot., 2010, 63, 279–283

    Article  PubMed  CAS  Google Scholar 

  49. McArthur K.A.; Mitchell S.S.; Tsueng G.; Rheingold A.; White D.J.; Grodberg J., et al., Lynamycins A-E, chlorinated bisindolepyrrole antibiotics from a novel marine actinomycete, J. Nat. Prod., 2008, 71, 1732–1737

    Article  PubMed  CAS  Google Scholar 

  50. Carlson J.C., Li S., Burr D.A., Sherman D.H., Isolation and Characterization of Tirandamycins from Marine-Derived Streptomyces sp., J. Nat. Prod., 2009, 72, 2076–2079

    Article  PubMed  CAS  Google Scholar 

  51. Kwon H.C., Kauffman C.A., Jensen P.R., Fenical W., Marinomycin A-D, antitumour antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”, J. Am. Chem. Soc., 2006, 128, 1622–1632

    Article  PubMed  CAS  Google Scholar 

  52. Roh H., Uguru G.C., Ko H.J., Kim S., Kim B.Y., Goodfellow M., et al, Genome sequence of the abyssomicin- and proximicin-producing marine actinomycete Verrucosispora maris AB-18-032, J. Bacteriol., 2011, 193, 3391–2

    Article  PubMed  CAS  Google Scholar 

  53. Fiedler H.P., Bruntner C., Bull A.T., Ward A.C., Goodfellow M., Potterat O., et al., Marine actinomycetes as a source of novel secondary metabolites, Antonie van Leeuwenhoek, 2005, 87, 37–42

    Article  PubMed  CAS  Google Scholar 

  54. Bister B., Bischoff D., Ströbele M., Riedlinger J., Reicke A., Wolter F., et al., Abyssomycin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway, Angew. Chem. Int. Ed., 2004, 43, 2574–2576

    Article  CAS  Google Scholar 

  55. Hohmann C., Schneider K., Bruntner C., Brown R., Jones A.L., Goodfellow M., et al., Albidopyrone, a new α-pyrone-containing metabolite from marinederive Streptomyces sp. NTK 227, J. Antibiot., 2009, 62, 75–79

    Article  PubMed  CAS  Google Scholar 

  56. Huang H., Wu X., Yi S., Zhou Z., Zhu J., Fang Z., et al., Rifamycin S and its geometric isomer produced by a newly found actinomycete, Micromonospora rifamycinica, Antonie van Leeuwenhoek, 2009, 95, 143–148

    Article  PubMed  CAS  Google Scholar 

  57. Xie Y., Xu H., Sun Ch., Yu Y., Chen R., Two novel nucleosidyl-peptide antibiotics: Sansanmycin F and G produced by Streptomyces sp. SS, J. Antibiotic., 2010, 63, 143–146

    Article  CAS  Google Scholar 

  58. Tohyama S., Takahashi Y., Akamatsu Y., Biosynthesis of amycolamicin: the biosynthetic origin of a branched α-aminoethyl moiety in the unusual sugar amycolose, J. Antibiot., 2010, 63, 147–149

    Article  PubMed  CAS  Google Scholar 

  59. El-Gendy M.M.A., Hawas U.W., Jaspars M., Novel Bioactive Metabolites from a Marine Derived Bacterium Nocardia sp. ALAA 2000, J. Antibiot., 2008, 61, 379–386

    Article  PubMed  CAS  Google Scholar 

  60. Parry R., Nishino S., Spain J., Naturally-occurring nitro compounds, Nat. Prod. Rep., 2011, 28, 152–167

    Article  PubMed  CAS  Google Scholar 

  61. Tee E.H.L., Karoli T., Ramu S., Huang J.X., Butler M.S., Cooper M.A., Synthesis of Essramycin and Comparison of Its Antibacterial Activity, J. Nat. Prod., 2010, 73, 1940–1942

    Article  PubMed  CAS  Google Scholar 

  62. Yu Z., Zhao L.X., Jiang Ch.L., Duan Y., Wong L., Carver K.C., et al., Bafilomycins produced by an endophytic actinomycete Streptomyces sp., YIM56209, J. Antibiot., 2011, 64, 159–162

    Article  PubMed  CAS  Google Scholar 

  63. Werner G., Hagenmaier H., Metabolic products of microorganisms.224, Bafilomycins, a new Group of Macrolide Antibiotics, J. Antibiot., 1984, 37, 110–117

    Article  PubMed  CAS  Google Scholar 

  64. Venkat R.M., Liu J., Sunga M., White D.J., Grodberg J., Teisan S., et al., Lipoxazolidinones A, B and C: Antibacterial 4-Oxazolidinones from a Marine Actinomycete Isolated from a Guam Marione Sediment, J. Nat. Prod., 2007, 70, 1454–1457

    Article  CAS  Google Scholar 

  65. Abdalla M.A., Helmke E., Laatsch H., Fujianmycin C, A Bioactive Angucyclinone from a Marine Derived Streptomyces sp. B6219 [1], Nat. Prod. Comm., 2010, 5, 1917–1920

    CAS  Google Scholar 

  66. Waksman S.A., Woodruff H.B., Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria, J. Bacteriol., 1941, 42, 231–249

    PubMed  CAS  Google Scholar 

  67. Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., et al., Adriamycin, 14-Hydroxydaunomycin, a new antitumor antibiotic from Streptomyces peucetius var. caesius, Biotechnol. Bioeng., 1969, 11, 1101–1110

    Article  PubMed  CAS  Google Scholar 

  68. Ishizuka M., Takayama H., Takeuchi T., Umezawa H., Activity and toxicity of bleomycin, J. Antibiot., 1967, 20, 15–24

    PubMed  CAS  Google Scholar 

  69. Schein P.S., Macdonald J.S., Hot D.W., Wooley P.V., The FAM (5-fluorouracil, adriamycin, mitomycin C) and SMF (streptozotocin, mitomycin C, 5-fluorouracil) chemotherapy regiment, In: Carter S.K., Crooke S.T., Alder N.A. (Eds.), Mitomycin C: Current Status and New Developments, Academic Press, New York, 1979

    Google Scholar 

  70. Wang Z., Gleichman H., GLUTS2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice, Diabetes, 1998, 47, 50–56

    Article  PubMed  CAS  Google Scholar 

  71. Walker S., Landovitz R., Ding W.D., Ellestad G. A., Kahne D., Cleavage behavior of calicheamycin gamma 1 and calicheamycin T., Proc. Natl. Acad. Sci. USA, 1992, 89, 4608–4612

    Article  PubMed  CAS  Google Scholar 

  72. Zhang H., Sun G.S., Li X., Pan H.L., Zhang Y.S., A New Geldanamycin Analogue from Streptomyces hygroscopicus, Molecules, 2010, 15, 1161–1167

    Article  PubMed  CAS  Google Scholar 

  73. Gorajana A., Venkatesan M., Vinjamuri S., Kurada B.V., Peela S., Jangam P., et al., Resistoflavine, cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7, Microbiol Res., 2007, 162, 322–327

    Article  PubMed  CAS  Google Scholar 

  74. Cho J.Y, Williams P.G., Kwon H.C., Jensen P.R., Fenical W., Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis, J. Nat. Prod., 2007, 70, 1321–1328

    Article  PubMed  CAS  Google Scholar 

  75. Hawas U.W., Shaaban M., Shaaban K.A., Speitling M., Maier A., Ketler G., et al., Mansouramycins A-D, cytotoxic isoquinolinequinones from marine streptomycete, J. Nat. Prod., 2009, 72, 2120–2124

    Article  PubMed  CAS  Google Scholar 

  76. Pérez M., Crespo C., Schleissner C., Rodríguez P., Zúñiga P., Reyes F., Tartrolon D, a cytotoxic macrodiolide from marine-derived actinomycete Streptomyces sp. MDG-04-17-069, J. Nat. Prod., 2009, 72, 2192–2194

    Article  PubMed  CAS  Google Scholar 

  77. Hohmann C., Schneider K., Brutner C., Irran E., Nicholson G., Bull A.T., et al., Carboxamycin, a new antibiotic of the benzoxazole family and phosphodiesterase inhibitor, produced by deep-sea strain Streptomyces sp, NTK 937, J Antibiot., 2009, 62, 99–104

    Article  PubMed  CAS  Google Scholar 

  78. Abdel-Mageed W.M., Milne B.F., Wagner M., Schumacher M., Sandor P., Pathom-aree W., Dermacozines, a new phenazine family from deep sea dermacocci isolated from Mariana Trench sediment, Org. Biomol. Chem., 2010, 8, 2352–2362

    Article  PubMed  CAS  Google Scholar 

  79. Fiedler H-P., Bruntner C., Riedlinger J., Bull A.T., Knutsen G., Goodfellow M., et al., Proximicins A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosipora, J. Antibiot., 2008, 61, 158–163

    Article  PubMed  CAS  Google Scholar 

  80. Izumikawa M., Khan S.T., Komaki H., Takagi M., Shin-ya K., JBIR-31, a new teleocidin analog, produced by salt-requiring Streptomyces sp. NBRC 105896 isolated from a marine sponge, J. Antibiot., 2010, 63, 33–36

    Article  PubMed  CAS  Google Scholar 

  81. Fujiwara T., Nagai A., Takagi M., Shin-ya K., JBIR-69, a new metabolite from Streptomyces sp. OG05, J. Antibiot., 2010, 63, 95–96

    Article  PubMed  CAS  Google Scholar 

  82. Motohashi K., Takagi M., Yamamura H., Hayakawa M., Shin-ya K., A new angucycline and a new butenolide isolated from lichen-derived Streptomyces spp., J.Antibiot., 2010, 63, 545–548

    Article  PubMed  CAS  Google Scholar 

  83. Motohashi K., Takagi M., Shin-ya K., Tetracenoquinocin and 5-iminoaranciamycin from a Sponge-Derived Streptomyces sp. SP080513GE-26, J. Nat. Prod., 2010, 73, 755–758

    Article  PubMed  CAS  Google Scholar 

  84. Schneemann I., Kajahn I., Ohlendorf B., Zinecker H., Erhand A., Nagel K., et al., Mayamycin, a Cytotoxic Polyketide from Streptomyces Strain Isolated from Marine Sponge Halichondria Panicea. J. Nat. Prod., 2010, 73, 1309–1312

    Article  PubMed  CAS  Google Scholar 

  85. Trejo W.H., Bennett R.E., Streptomyces nodosus sp. N., the amphotericin - producing organism, J Bacteriol., 1963, 85, 436–439

    PubMed  CAS  Google Scholar 

  86. Kimura K., Bugg T.D.H., Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis, Nat. Prod. Rep., 2003, 20, 252–273

    Article  PubMed  CAS  Google Scholar 

  87. Hector R.F., Compounds active against cell walls of medically important fungi, Clin. Microbiol. Rev., 1993, 6, 1–21

    PubMed  CAS  Google Scholar 

  88. Liao G., Li J., Li L., Yang H., Tian Y., Tan H., Selectively improving nikkomycin Z producton by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes, Microb. Cell Fact., 2009, 8, 61

    Article  PubMed  CAS  Google Scholar 

  89. Yang P.W., Li M.G., Zhao J.Y., Zhu M.Z., Shang H., Li J.R., et al., Oligomycins A and C, major secondary metabolites isolated from the newly isolated strain Streptomyces diastaticus, Folia Microbiol., 2010, 55, 10–16

    Article  CAS  Google Scholar 

  90. Sehgal S.N., Baker H., Vézina C., Rapamycin (AY-22989), a new antifungal antibiotic.II Fermentation, isolation and characterization, J. Antibiot., 1975, 28, 727–733

    Article  PubMed  CAS  Google Scholar 

  91. Park S.R., Yoo Y.J., Ban Y.H., Yoon Y.J., Biosynthesis of rapamycin and its regulation: past achievements and recent progress, J. Antibiot., 2010, 63, 434–441

    Article  PubMed  CAS  Google Scholar 

  92. Prapagdee B., Kuekulvong C., Mongkolsuk S., Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi, Int. J. Biol. Sci., 2008, 4, 330–337

    Article  PubMed  CAS  Google Scholar 

  93. Taechowisan T., Chunhua L., Shen Y., Lumyong S., Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity, Microbiol., 2005, 151, 1691–1695

    Article  CAS  Google Scholar 

  94. Schleger R., Thrum H., Zielinski J., Borowski E.J., The structure of roflamycin. A new polyene macrolide antifungal antibiotic., J.Antibiot., 1981, 34, 122–123

    Article  Google Scholar 

  95. Wu X., Huang H., Chen G., Sun Q., Peng J., Zhu J., et al., A novel antibiotic produced by Streptomyces noursei Da07210, Antonie van Leeuwenhoek, 2009, 96, 109–112

    Article  PubMed  CAS  Google Scholar 

  96. Kavitha A., Prabhakar P., Vijayalakshmi M., Venkateswarlu Y., Purification and biological evaluation of the metabolites produced by Streptomyces sp TK-VL_333., Res. Microbiol., 2010, 161, 335–345

    Article  PubMed  CAS  Google Scholar 

  97. Mishima H., Ide J., Muramatsu S., Ono M, Milbemycins, a new family of macrolide antibiotics. Structure determination of milbemycins D,E,F,G,H,J and K., J.Antibiotics, 1983, 36, 980–990

    Article  CAS  Google Scholar 

  98. Hotson I.K., The avermectins: A new family of antiparasitic agents, J. S. Afr. Vet. Assoc., 1982, 53, 87–90

    PubMed  CAS  Google Scholar 

  99. Sun Y., Zhou X., Tu G., Deng Z., Identification of a gene cluster encoding meilingmycin biosynthesis among multiple polyketide synthase contigs isolated from Streptomyces nanchangensis NS3226., Arch. Microbiol., 2003, 180, 101–107

    Article  PubMed  CAS  Google Scholar 

  100. Pimentel-Elardo S.M., Buback V., Gulder T.A.M., Bugni T.S., Reppart J., Bringmann G., New Tetromycin Derivatives with Anti-Trypanosomal and Protease Inhibitory Activities, Mar. Drugs, 2011, 9, 1682–1697

    Article  PubMed  CAS  Google Scholar 

  101. Niitsuma M., Hashida J., Iwatsuki M., Mori M., Ishiyama A., Namatame M., et al., Sinefungin VA and dehydrosinefungin V, new antitrypanosomal antibiotics produced by Streptomyces sp. K05-0178, J. Antibiot., 2010, 63, 673–679

    Article  PubMed  CAS  Google Scholar 

  102. Takatsuki A., Tamura G., Tunicamycin a new antibiotic. II Some biological properties of the antiviral activity of tunicamycin, J. Antibiot., 1971, 24, 224–231

    Article  PubMed  CAS  Google Scholar 

  103. Takagi M., Motohashi K., Nagai A., Izumikawa M., Tanaka M., Fuse S., et al., Anti-influenza virus compound from Streptomyces sp. RI18, Org. Lett., 2010, 12, 4664–4646

    Article  PubMed  CAS  Google Scholar 

  104. Wehmeier U.F, Piepersberg W., Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose, Appl Microbiol Biotechnol., 2004, 63, 613–25

    Article  PubMed  CAS  Google Scholar 

  105. Weibel E. K., Hadvary P., Hochuli E., Kupfer E., Lengsfeld H., Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. Producing organism, Fermentation, Isolation and Biological Activity, J. Antibiot., 1987, 8, 1081–1085

    Article  Google Scholar 

  106. Aggarwala D., Fernandez M. L., Solimanb G.A., Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs, Metabolism, 2006, 55, 794–802

    Article  CAS  Google Scholar 

  107. Kino T., Hatanaka, H., Hashimoto, M., Nishiyama, M., Goto, T., Okuhara, et al., FK-506, a novel immunosuppressant isolated from a Streptomyces. Fermentation, isolation, and physiochemical and biological characteristics, J. Antibiot., 1987, 40, 1249–1255

    Article  PubMed  CAS  Google Scholar 

  108. Kirst H.A., The spinosyn family of insecticides: realizing the potential of natural product research., J. Antibiot., 2010, 63, 101–111

    Article  PubMed  CAS  Google Scholar 

  109. Hayakaa M., Yamamura H., Nakagawa Y., Kawa Y., Hayashi Y., Misonou T., et al., Taxonomic diversity of Actinomycetes Isolated from Swine Manure Compost, Actinomycetologica, 2010, 24, 58–62

    Article  Google Scholar 

  110. Zhang J., Marcin C., Shifflet M.A., Salmon P., Brix T., Greasham R., et al., Development of a defined medium fermentation process for physostigmine production by Streptomyces griseofuscus, Appl. Microbiol. Biotechnol., 1996, 44, 568–575

    Article  PubMed  CAS  Google Scholar 

  111. Hayakawa Y., Yamazaki Y., Kurita M., Kawasaki T., Takagi M., Shin-ya K., Flaviogeranin, a new neuroprotective compound from Streptomyces sp, J. Antibiot., 2010, 63, 379–380

    Article  PubMed  CAS  Google Scholar 

  112. Motohashi K., Toda T., Sue M., Furihata K., Shizuri Y., Matsuo Y., et al., Isolation and structure elucidation of tumescenamides A and B, two peptides produced by Streptomyces tumescens Ym23-260, J. Antibiot., 2010, 63, 549–552

    Article  PubMed  CAS  Google Scholar 

  113. Baltz R. H., Antimicrobials from Actinomycetes: Back to the Future, Microbe, 2007, 2, 125–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Solecka.

About this article

Cite this article

Solecka, J., Zajko, J., Postek, M. et al. Biologically active secondary metabolites from Actinomycetes. cent.eur.j.biol. 7, 373–390 (2012). https://doi.org/10.2478/s11535-012-0036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-012-0036-1

Keywords

Navigation