Skip to main content
Log in

Factors influencing uptake of contaminated particulate matter in leafy vegetables

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The contents of cadmium, iron, lead and zinc in the biomass of two species of leafy vegetables after urban particulate matter (PM) application was investigated in lettuce (Lactuca sativa var. capitata) and chard (Beta vulgaris var. cicla). The experimental design consisted of four variables: i) two different soil types, ii) two vegetables, iii) two size fractions of contaminated particulate matter (PM) (0.063–0.119 mm, and <0.063 mm), and iv) foliar and soil application of the PM. The aliquots of the PM samples were applied to the soil before the experiment and as a foliar suspension during plant growth. The element uptake by plant biomass was significantly higher via foliar application, simulating the atmospheric deposition, than via the roots from the soil application treatment. The content in plants increased rapidly compared to the control treatment for the elements iron, lead and zinc. Gently washing the leaves only slightly reduced the amounts of Fe and Zn. However, the majority of Pb was removed by washing with the concentration dropping from 3000% to 500%. The effect of PM application on Cd contents in plant leaves was negligible, in most cases. Lettuce exhibited higher element uptake compared to chard. No adverse effects of PM application on growth parameters of the vegetables were observed. No significant differences were reported for particle size fractions of PM. Fluvisol soils had a higher element uptake via roots than Chernozem soils. Moreover, the addition of PM into the Fluvisol altered the sorption properties of the soil resulting in a lower Cd uptake by plants growing in PM amended Fluvisols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varrica D., Dongarrà G., Sabatino G., Monna F., Inorganic geochemistry of roadway dust from the metropolitan area of Palermo, Italy, Environ. Geol., 2003, 44, 222–230

    CAS  Google Scholar 

  2. Allen A.G., Nemitz E., Shi J.P., Harrison R.M., Greenwood J.C., Size distributions of trace metals in atmospheric aerosols in the United Kingdom, Atm. Environ., 2001, 35, 4581–4591

    Article  CAS  Google Scholar 

  3. Norra S., Stüben D., Trace element patterns and seasonal variability of dust precipitation in a low polluted city — the example of Karlsruhe/Germany, Environ. Monit. Assess., 2003, 93, 203–228

    Article  Google Scholar 

  4. Birmili W., Allen A.G., Bary F., Harrios, R.M., Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic, Environ. Sci. Technol., 2006, 40, 1144–1153

    Article  PubMed  CAS  Google Scholar 

  5. Gaudry A., Moskura M., Mariet C., Ayrault S., Denayer F., Bernard N., Inorganic pollution in PM10 particles collected over three french sites under various influence: rural conditions, traffic and industry, Water, Air, Soil Pollut., 2008, 193, 91–106

    Article  CAS  Google Scholar 

  6. Shaheen N., Shah M.H., Jaffar M., A study of airborne selected metals and particle size distribution in relation to climatic variables and their source identification, Water, Air, Soil Pollut., 2005, 164, 275–294

    Article  CAS  Google Scholar 

  7. Charlesworth S.M., Lees J.A., The distribution of heavy metals in deposited urban dusts and sediments, Coventry, England, Environ. Geochem. Health, 1999, 21, 97–115

    Article  CAS  Google Scholar 

  8. Sutherland R.A., Tack F.M.G., Ziegler, A.D., Bussen, J.O., Metal extraction from road-deposited sediments using nine partial decomposition procedures, Appl. Geochem., 2004, 19, 947–955

    Article  CAS  Google Scholar 

  9. Viard B., Pihan F., Promeyrat S., Pihan J.C., Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails, Chemosphere, 2004, 55, 1349–1359

    Article  PubMed  CAS  Google Scholar 

  10. Kabata-Pendias A., Pendias H., Trace elements in soils and plants, 3rd ed., CRC Press, Boca Raton, 2001

    Google Scholar 

  11. Bradl H.B., Adsorption of heavy metal ions on soils and soils constituents, J. Coll. Int. Sci., 2004, 277, 1–18

    Article  CAS  Google Scholar 

  12. Golia E.E., Dimirkou A., Mitsos I.K. Influence of some soil parameters on heavy metals accumulation by vegetables grown in agriculture soil of different soil orders, Bull. Environ. Contam. Toxicol., 2008, 81, 80–84

    Article  PubMed  CAS  Google Scholar 

  13. Voutsa D., Grimanis A., Samara C., Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter, Environ. Pollut., 1996, 94, 325–335

    Article  PubMed  CAS  Google Scholar 

  14. Rodriguez J.H., Pignata M.L., Fangmeier A., Klumpp A., Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany), Chemosphere, 2010, 80, 208–215

    Article  PubMed  CAS  Google Scholar 

  15. Wood T., Bormann F.H., Increases in foliar leaching caused by acidification of an artificial mist, Ambio, 1975, 4, 169–171

    CAS  Google Scholar 

  16. Public notice No. 13/1994, regulating some details concerning the preservation of agricultural lands available. Czech Ministry of the Environment, Prague, 1994

  17. Sysalová J., Száková J., Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-AES methods, Chem. Pap., 2007, 61, 271–275

    Article  Google Scholar 

  18. Sysalová J., Kučera J., Kotlík B., Havránek V., Quality control materials for the determination of trace elements in airborne particulate matter, Anal. Bioanal. Chem., 2002, 373, 195–199

    Article  PubMed  Google Scholar 

  19. ISO 11260, Standard of Soil Quality — Determination of Effective cation Exchange Capacity and Base Saturation Level Using Barium Chloride Solution, International Organization for Standardization, 1994

  20. Sims J.R., Haby V.A., Simplified colorimetric determination of soil organic matter. Soil Sci., 1971, 112, 137–141

    Article  CAS  Google Scholar 

  21. Borůvka L., Huanwei C., Kozák J., Krištoufková S., Heavy contamination of soil with cadmium, lead and zinc in the alluvium of the Litavka river, Rostl. Výr., 1996, 42, 543–550

    Google Scholar 

  22. Quevauviller P., Ure A., Muntau H., Griepink B., Improvement of analytical measurements within the BCR — program — Single and sequential extraction procedures applied to soil and sediment analysis, Int. J. Environ. Anal. Chem., 1993, 51, 129–134

    Article  CAS  Google Scholar 

  23. Ge Y., Murray P., Sauvé S., Hendershot W., Low metal bioavailability in a contaminated urban site, Environ. Toxicol. Chem., 2002, 21, 954–961

    Article  PubMed  CAS  Google Scholar 

  24. Zehetner F., Rosenfellner U., Mentler A, Gerzabek M.H., Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface, Water Air Soil Pollut., 2009, 198, 125–132

    Article  CAS  Google Scholar 

  25. Komarnicki G.J.K., Lead and cadmium in indoor air and the urban environment. Environ. Pollut., 2005, 136, 47–61

    Article  PubMed  CAS  Google Scholar 

  26. Harrison R.M., Chirgawi M.B., The assessment of air and soil as contributors of some trace metals to vegetable plants II. Translocation of atmospheric and laboratory-generated cadmium aerosols to and within vegetable plants, Sci. Tot. Environ., 1989, 83, 35–45

    Article  CAS  Google Scholar 

  27. Fismes J.F., Echevarria G., Leclerc-Cessac E., Morel J.L., Uptake and transport of radioactive nickel and cadmium into three vegetables after wet aerial contamination, J. Environ. Qual., 2005, 34, 1497–1507

    Article  PubMed  CAS  Google Scholar 

  28. Nicholson F.A., Jones K.C., Johnston A.E., The significance of the retention of atmospherically deposited cadmium on plant surfaces to the cadmium content of herbage, Chemosphere, 1995, 31, 3043–3049

    Article  CAS  Google Scholar 

  29. Fleischer M., Sarofim A.F., Fassett D.W., Hammond P., Shacklette H.T., Nisbet I.C.T., et al., Environmental impact of cadmium: A review by the panel on hazardous trace substances, Environ. Health Persp., 1974, 7, 253–323

    Article  CAS  Google Scholar 

  30. Bagdatlioglu N., Nergiz C., Ergonul P.G., Heavy metal levels in leafy vegetables and some selected fruits, J. Verbrauch. Lebensm., 2010, 5, 421–428

    Article  CAS  Google Scholar 

  31. Cawse P.A., Trace and major elements in the atmosphere at rural locations in Great Britain, 1972–81, In: Kabata-Pendias A., Pendias H. (Eds.), Trace elements in soils and plants, 3rd ed., CRC Press, Boca Raton, 2001

    Google Scholar 

  32. Panagiotopoulos K., Sakelariades S., Polyzopoulos N., Vouzoulidou-Alexandrou E., Concentrations of Zn, Cd, Cu, Ni, Mn, Pb, and Fe in vegetables and soils from three locations in N. Greece, Annals. Fac. Agric. Forestry, 1976, 18, 159–198

    Google Scholar 

  33. Gantides N., Bladenopoulou S., Kandylakis Ch., Spyropoulos A., Investigation of the heavy metal pollution of the vegetative land of West Thessaloniki, In: Proceedings of the 4th Greek Conference on Soil and Environment, Hellenic Soil Science Society, Thessaloniki, Greece, 1992, Vol. A, pp. 401–425

  34. Samara C., Misaelides P., Tsalev D., Anousis I., Kouimtzis T., Trace element distribution in vegetables grown in industrial area of Thessaloniki, Greece, Fresenius Environ. Bull., 1992, 1, 577–582

    CAS  Google Scholar 

  35. Huang B., Kuo S., Bembenek R., Availability to lettuce of arsenic and lead from trace element fertilizers in soil, Water, Air, Soil Pollut., 2005, 164, 223–239

    Article  CAS  Google Scholar 

  36. Sawidis T., Metentzoglou E., Mitrakas M., Vasara E., A study of chromium, cooper, and lead distribution from lignite fuels using cultivated and non-cultivated plants as biological monitors, Water, Air, Soil Pollut., 2011, 220, 339–352

    Article  CAS  Google Scholar 

  37. Vodyanitskii Y.N., Arsenic, lead, and zinc compounds in contaminated soils according to EXAFS spectroscopic data: A review, Eur. Soil Sci., 2006, 39, 611–621

    Article  Google Scholar 

  38. Roberts T.M., Gizyn W., Hutchinson T.C., Lead contamination of air, soil, vegetation and people in the vicinity of secondary lead smelters, In: Kabata-Pendias A., Pendias H., (Eds.), Trace elements in soils and plants, 3rd ed., CRC Press, Boca Raton, 2001

    Google Scholar 

  39. Uzu G., Sobanska S., Sarret G., Muñoz M., Dumat C., Foliar lead uptake by lettuce exposed to atmospheric fallouts, Environ. Sci. Technol., 2010, 44, 1036–1042

    Article  PubMed  CAS  Google Scholar 

  40. Hu, X. Ding Z., Lead/Cadmium Contamination and Lead Isotopic Ratios in Vegetables Grown in Peri-Urban and Mining/Smelting Contaminated Sites in Nanjing, China, Bull Environ Contam Toxicol., 2009, 82, 80–84

    Article  PubMed  CAS  Google Scholar 

  41. Warren H.V., Delavault R.E., Fletcher K., Wilks E., Variation in the copper, zinc, lead and molybdenum content of some British Columbia vegetables, In: Kabata-Pendias A., Pendias H., (Eds.), Trace elements in soils and plants, 3rd ed., CRC Press, Boca Raton, 2001

    Google Scholar 

  42. Shlacklette H.T., Elements in fruits, and vegetable from areas of commercial production in the Conterminous United States, In: Kabata-Pendias A., Pendias H., (Eds.), Trace elements in soils and plants, 3rd ed., CRC Press, Boca Raton, 2001

    Google Scholar 

  43. Madejón P., Barba-Brioso C., Lepp N.W., Fernández-Caliani J.C., Traditional agricultural practices enable sustainable remediation of highly polluted soils in Southern Spain for cultivation of food crops, J. Environ. Manag., 2011, 92, 1828–1836

    Article  Google Scholar 

  44. Preer J.R., Sekhon H.S., Stephens B.R., Collins M.S., Factors affecting heavy-metal content of garden vegetables, Environ. Pollut. 1980, 1, 95–104

    Article  CAS  Google Scholar 

  45. Pandey J., Pandey R., Shubhashish K., Air-borne heavy metal contamination to dietary vegetables: A case study from India, Bull. Environ. Contam. Toxicol., 2009, 83, 931–936

    Article  PubMed  CAS  Google Scholar 

  46. Wang Q.R., Cui I.S., Liu W.M., Dong Y.T., Christie P., Soil contamination and plant uptake of heavy metals at polluted sites in China, J. Environ. Sci. Health, 2003, 38, 823–838

    Article  Google Scholar 

  47. Salim R., Alsubu M.M., Atallah A., Effects of root and foliar treatments with lead, cadmium, and copper on the uptake distribution and growth of radish plants, Environ. Int., 1993, 19, 393–404

    Article  CAS  Google Scholar 

  48. Marschner H., Mineral nutrition in higher plants, Harcourt Brace Jovanovich Publ., Academic Press, London, 1986

    Google Scholar 

  49. Greger M., Johansson M., Stihl A., Hamza K., Foliar uptake of Cd by pea (Pisum sativum) and sugarbeet (Beta vulgaris), Physiol. Plant., 1993, 88, 563–570

    Article  CAS  Google Scholar 

  50. Moraghan J.T., Removal of endogenous iron, manganese and zinc during plant washing, Commun. Soil Sci. Plant Anal., 1991, 22, 323–330

    Article  Google Scholar 

  51. Alfani A., Maisto G., Iovieno P., Rutigliano F.A., Bartoli G., Leaf contamination by atmospheric pollutants as assessed by elemental analysis of leaf tissue, leaf surface deposit and soil, J. Plant Physiol. 1996, 148, 243–248

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiřina Száková.

About this article

Cite this article

Žalud, P., Száková, J., Sysalová, J. et al. Factors influencing uptake of contaminated particulate matter in leafy vegetables. cent.eur.j.biol. 7, 519–530 (2012). https://doi.org/10.2478/s11535-012-0029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-012-0029-0

Keywords

Navigation