Skip to main content
Log in

UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

In the present study, we have evaluated the effects of increased UV-B radiation that simulates 17% ozone depletion, on fungal colonisation and concentrations of rutin, catechin and quercetin in common buckwheat (Fagopyrum esculentum) and tartary buckwheat (Fagopyrum tataricum). Induced root growth and reduced shoot:root ratios were seen in both of these buckwheat species after enhanced UV-B radiation. There was specific induction of shoot quercetin concentrations in UV-B-treated common buckwheat, whereas there were no specific responses for flavonoid metabolism in tartary buckwheat. Root colonisation with arbuscular mycorrhizal fungi significantly reduced catechin concentrations in common buckwheat roots, and induced rutin concentrations in tartary buckwheat, but did not affect shoot concentrations of the measured phenolics. Specific UV-B-related reductions in the density of microsclerotia were observed in tartary buckwheat, indicating a mechanism that potentially affects fungus-plant interactions. The data support the hypothesis that responses to enhanced UV-B radiation can be influenced by the plant pre-adaptation properties and related changes in flavonoid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paul N.D., Gwynn-Jones D., Ecological roles of solar UV radiation: towards an integrated approach, Trends Ecol. Evol., 2003, 18, 48–55

    Article  Google Scholar 

  2. Caldwell M.M., Teramura A.H., Tevini M., The changing solar ultraviolet climate and the ecological consequences for higher plants, Trends Ecol. Evol., 1989, 4, 363–367

    Article  PubMed  CAS  Google Scholar 

  3. Jansen A.K.M., Gaba V., Greenberg B.M., Higher plants and UV-B radiation: balancing damage, repair and acclimation, Trends Plant Sci., 1998, 3, 131–135

    Article  Google Scholar 

  4. Gene R.M., Cartana C., Adzet T., Marin, E. Panella, T. Canigueral, S., Anti-inflammatory and analgesic activity of Baccharis trimera: identification of its active constituents, Planta Med., 1996, 62, 232–235

    Article  PubMed  CAS  Google Scholar 

  5. Post J.F.M., Varma R.S., Growth inhibitory effects of bioflavonoids and related compounds on human leukemic CEM-C1 and CEM-C7 cells, Cancer Lett., 1992, 67, 207–213

    Article  PubMed  CAS  Google Scholar 

  6. Ramanathan R., Das W.P., Tan C.H., Inhibitory effects of 2-hydroxy chalcone and other flavonoids on human cancer cell proliferation, Int. J. Oncol., 1993, 3, 115–119

    PubMed  CAS  Google Scholar 

  7. Hasan A.A., Antibacterial activity of flavonoid glycosides from the leaves of Rumex chalepensis, Fitoterapia, 1996, 67, 182–183

    CAS  Google Scholar 

  8. Liu M., Matsuzaki S., Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus (MRSA), Dokkyo J. Med. Sci., 1995, 22, 253–261

    CAS  Google Scholar 

  9. Barnes P.W., Shinkle J.R., Flint S.D., Ryel R.J., UV-B radiation, photomorphogenesis and plantplant interactions, Prog. Bot., 2005, 66, 313–340

    Article  Google Scholar 

  10. Breznik B., Germ M., Gaberščik A., Kreft I., The combined effects of elevated UV-B radiation and selenium on tartary buckwheat (Fagopyrum tataricum) habitus, Fagopyrum, 2004, 21, 59–64

    Google Scholar 

  11. Ivanova P.I., Dobrikova A.G., Taneva S.G., Apostolova E.L., Sensitivity of the photosynthetic apparatus to UV-A radiation: role of light-harvesting complex II-photosystem II supercomplex organization, Radiat. Environ. Biophys., 2008, 47, 169–177

    Article  PubMed  CAS  Google Scholar 

  12. Turcsányi E., Vass I., Effect of UV-A radiation on photosynthetic electron transport, Acta Biol. Szeged., 2002, 46, 171–173

    Google Scholar 

  13. Carletti P., Masi A., Wonisch A., Grill D., Tausz M., Ferretti M., Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings, Environ Exp. Bot., 2003, 50, 149–157

    Article  CAS  Google Scholar 

  14. Jordan B.R., The effects of ultraviolet-B radiation on plants: a molecular perspective, In: Callow J.A. (Ed.), Advances in Botanical Research, Incorporating Advances in Plants Pathology, Vol. 22, Academic Press, London New York, 1996

    Google Scholar 

  15. Li J., Ou-Lee T.-M., Raba R., Amundson R.G., Last R.L., Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation, Plant Cell, 1993, 5, 171–179

    Article  PubMed  CAS  Google Scholar 

  16. Hofmann R.W., Swinny E.E., Bloor S.J., Markham K.R., Ryan K.G., Campbell B.D., et al., Responses of nineTrifolium repens L. populations to ultraviolet-B radiation: Differential flavonol glycoside accumulation and biomass production, Ann. Bot., 2000, 86, 527–537

    Article  CAS  Google Scholar 

  17. Kreft S., Štrukelj B., Gaberščik A., Kreft I., Rutin in buckwheat herbs at different UV-B radiation levels: comparison of two UV spectrophotometric and an HPLC method, J Exp. Bot., 2002, 53, 1801–1804

    Article  PubMed  CAS  Google Scholar 

  18. Yao Y., Xuan Z., Li Y., He Y., Korpelainen H., Li C., Effects of ultraviolet-B radiation on crop growth, development, yield and leaf pigment concentration of tartary buckwheat (Fagopyrum tataricum) under field conditions, Eur. J. Agron., 2006, 25, 215–222

    Article  CAS  Google Scholar 

  19. Duguay K., Klironomos J.N., Direct and indirect effects of enhanced UV-B radiation on the decomposing and competitive abilities of saprobic fungi, Appl. Soil Ecol., 2000, 14, 157–164

    Article  Google Scholar 

  20. Smith S.E., Read D.J., Mycorrhizal Symbiosis, 3rd ed., Academic Press, London New York, 2008

    Google Scholar 

  21. Jumpponen A., Trappe J.M., Performance of Pinus contorta inoculated with two strains of root endophytic fungus Phialocephala fortinii: effects of resynthesis system and glucose concentration, Can. J. Bot., 1998, 76, 1205–1213

    CAS  Google Scholar 

  22. Li H., Smith S.E., Holloway R.E., Zhu Y., Smith F.A., Arbuscular mycorrhizal fungi contribute to phosphorous uptake by wheat grown in a phosphorous-fixing soil even in the absence of positive growth responses, New Phytol., 2006, 172, 536–543

    Article  PubMed  CAS  Google Scholar 

  23. Bücking H., Shachar-Hill Y., Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability, New Phytol., 2006, 165, 899–912

    Article  Google Scholar 

  24. Johnson D., Leake J.R., Read D.J., Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C, Soil Biol. Biochem., 2002, 34, 1521–1524

    Article  CAS  Google Scholar 

  25. Harley J.L., Harley E.L., A check list of mycorrhiza in the British flora, New Phytol., 1987, 105,(Suppl), 1–102

    Article  Google Scholar 

  26. Gai J.P., Feng G., Cai X.B., Christie P., Li X.L., A preliminary survey of the arbuscular mycorrhizal status of grassland plants in southern Tibet, Mycorrhiza, 2006, 16, 191–196

    Article  PubMed  CAS  Google Scholar 

  27. Wang B., Qiu Y.L., Phylogenetic distribution and evolution of mycorrhizas in land plants, Mycorrhiza, 2006, 16, 299–363

    Article  PubMed  CAS  Google Scholar 

  28. Likar M., Bukovnik U., Kreft I., Chrungoo N.K., Regvar M., Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum), Mycorrhiza, 2008, 18, 309–315

    Article  PubMed  Google Scholar 

  29. Johnson D., Response of terrestrial microorganisms to ultraviolet-B radiation in ecosystems, Res. Microbiol., 2003, 154, 315–320

    Article  PubMed  Google Scholar 

  30. van de Staaij J., Rozema J., Beem A., Aerts R., Increased solar UV-B radiation may reduce infection by arbuscular mycorrhizal fungi (AMF) in dune grassland plants: evidence from five years of field experience, Plant Ecol., 2001, 154, 171–177

    Google Scholar 

  31. Gaberščik A., Vončina M., Trošt T., Germ M., Björn L.O., Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient and enhanced UV-B radiation, J. Photochem. Photobiol., 2002, 66, 30–36

    Article  Google Scholar 

  32. Björn L.O., Murphy T.M., Computer calculations of solar ultraviolet radiation at ground level, Physiol. Veg., 1985, 23, 555–561

    Google Scholar 

  33. Gehrke C., Johanson U., Gwinn-Jones D., Björn L.O., Callaghan T.V., Lee J.A., Single and interactive effects of enhanced ultraviolet-B radiation and increased atmospheric CO2 on terrestrial and subarctic ecosystems, Ecol. Bull., 1996, 45, 192–203

    CAS  Google Scholar 

  34. Paul N.D., Stratospheric ozone depletion, UV-B radiation and crop disease, Environ. Poll., 2000, 108, 343–355

    Article  CAS  Google Scholar 

  35. Krizek D.T., Mirecki R.M., Evidence for phytotoxic effects of cellulose acetate in UV exclusion studies, Environ. Exp. Bot., 2004, 51, 33–43

    Article  CAS  Google Scholar 

  36. Caldwell M.M., Solar ultraviolet radiation as an ecological factor for alpine plants, Ecol. Monogr., 1968, 38, 243–268

    Article  Google Scholar 

  37. Phillips J.M., Hayman D.S., Improvement procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection, Trans. Br. Mycol. Soc., 1970, 55, 158–160

    Article  Google Scholar 

  38. Trouvelot A., Kough J.L., Gianinazzi-Pearson V., Mesure de taux de mycorhizacion fonctionelle. In: Gianinazzi-Pearson V., Gianinazzi S. (Eds.), Physiological and genetical aspects of mycorrhizae, INRA, Paris, 1986

    Google Scholar 

  39. Fabjan N., Rode J., Košir I.J., Wang Z., Zhang Z., Kreft I., Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercetin, J. Agric. Food Chem., 2003, 51, 6452–6455

    Article  PubMed  CAS  Google Scholar 

  40. Kreft S., Knapp M., Kreft I., Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis, J. Agric. Food Chem., 1999, 47, 4649–4652

    Article  PubMed  CAS  Google Scholar 

  41. Stapleton A.E., Walbot V., Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage, Plant Physiol., 1994, 105, 881–889

    Article  PubMed  CAS  Google Scholar 

  42. Bécard G., Douds D.D., Pfeffer P.E., Extensive in-vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols, Appl. Environ. Microbiol., 1992, 58, 821–825

    PubMed  Google Scholar 

  43. Scervino J.M., Ponce M.A., Erra-Bassells R., Vierheilig H., Ocampo J.A., Godeas A., Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus, Myc. Res., 2005, 109, 789–794

    Article  CAS  Google Scholar 

  44. Ponce M.A., Erra-Bassells R., Scervino J.M., Bompadre J., Vierheilig H., Ocampo J.A., et al., The effect of flavones and flavonols on colonization of tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus, Can. J. Microbiol., 2007, 52, 702–709.

    Google Scholar 

  45. Lagrange H., Jay-Allgmand C., Lapeyrie F., Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations, New Phytol., 2001, 149, 349–355

    Article  CAS  Google Scholar 

  46. Beyeler M., Heyser W., The influence of mycorrhizal colonisation on growth in the greenhouse and on catechin, epicatechin and procyanidin in roots of Fagus sylvatica L, Mycorrhiza, 1997, 7, 171–177

    Article  CAS  Google Scholar 

  47. Münzenberger B., Kottke I., Oberwinkler F., Reduction of phenolics in mycorrhizas of Larix decidua Mill, Tree Physiol., 1995, 15, 191–196

    PubMed  Google Scholar 

  48. Weiss M., Mikolajevski S., Peipp H., Schmitt U., Schmidt J., Wray V., et al., Tissue-specific and development dependent accumulation of phenylpropanoids in Larch mycorrhizas, Plant Physiol., 1997, 114, 15–27

    PubMed  CAS  Google Scholar 

  49. McLeod A.R., Rey A., Newsham K.K., Lewis G.C., Wolferstan P., Effects of elevated ultraviolet radiation and endophytic fungi on plant growth and insect feeding in Lolium perenne, Festuca rubra, F. arundinacea and F. pratensis, J. Photochem. Photobiol. B, 2001, 62, 97–107

    Article  PubMed  CAS  Google Scholar 

  50. De La Rosa T.M., Aphalo P.J., Lehto T., Effects of ultraviolet-B radiation on growth, mycorrhizas and mineral nutrition of silver birch (Betula pendula Roth) seedlings grown in low-nutrient conditions, Global Change Biol., 2003, 9, 65–73

    Article  Google Scholar 

  51. Zaller J.G., Caldwell M.M., Flint S.D., Scopel A.L., Salo O.E., Ballare C.L., Solar UV-B radiation affects below-ground parameters in a fen ecosystem in Tierra del Fuego, Argentina: implications of stratospheric ozone depletion, Global Change Biol., 2002, 8, 867–871

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjana Regvar.

About this article

Cite this article

Regvar, M., Bukovnik, U., Likar, M. et al. UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum . cent.eur.j.biol. 7, 275–283 (2012). https://doi.org/10.2478/s11535-012-0017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-012-0017-4

Keywords

Navigation