Skip to main content
Log in

Spatial modelling-based approach to phytogeographical regionalization using grassland vegetation data

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

We presented a methodology for drawing continuous boundaries in the landscape differentiating between regions with different floristic composition. A region in Central Slovakia covering 2,445 km2 was investigated. Ecological indicator values for temperature (EIT) in 1,978 grassland polygons were analysed. Ordinary kriging was used to interpolate EIT across the study region. Lattice wombling was used to identify the most intensive gradients in EIT and to draw boundaries, while ANOVA was used for post-classification analysis. A strong pattern of spatial continuity was present in EIT assigned to species in grassland polygons allowing for drawing continuous boundaries in the landscape. The study region was divided into 15 districts using the proposed method. Post-classification analysis indicated that 17 out of 23 adjacent districts were found to differ significantly in term of mean value of source samples. The results implied the need for incorporating spatial autocorrelation in sample data into post-classification analysis; such factor is often neglected in ecological research. The presented findings suggested broader applicability of the proposed method for spatial modelling, as vegetation data is widely accessible in databases for many regions of Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann A.A., Blows M.W., Species borders: ecological and evolutionary perspectives, Trends Ecol. Evol., 1994, 9, 223–227

    Article  PubMed  CAS  Google Scholar 

  2. Brown J.H., Stevens G.C., Kaufman D.M., The geographic range: size, shape, boundaries, and internal structure, Annu. Rev. Ecol. Syst., 1996, 27, 597–623

    Article  Google Scholar 

  3. Case T.J., Holt R.D., McPeek M.A., Keitt T.H., The community context of species’s borders: ecological and evolutionary perspectives, Oikos, 2005, 108, 28–46

    Article  Google Scholar 

  4. Fortin M.J., Keitt T.H., Maurer B.A., Taper M.L., Kaufman D.M., Blackburn T.M., Species’ geographic ranges and distributional limits: pattern analysis and statistical issues, Oikos, 2005, 105, 7–17

    Article  Google Scholar 

  5. Huntley B., How Plants Respond to Climate Change: Migration Rates, Individualism and the Cosequence for Plant Communities, Ann. Bot., 1991, 67,Suppl. 1, 15–22

    Google Scholar 

  6. Neilson R.P., Prentice I.C., Smith B., Kittel T.G.F., Viner D., Simulated changes in vegetation distribution under global warming, In: Watson R.T., Zinyowera M.C., Moss R.H., Dokken D.J., (Eds.), The Regional Impacts of Climate Change: An Assessment of Vulnerability, Cambridge University Press, Cambridge, 1998

    Google Scholar 

  7. Bachelet D., Neilson P.N., Lenihan J.M., Drapek R.J., Climate Change Effects on Vegetation Distribution and Carbon Budget in the United States, Ecosystems, 2001, 4, 164–185

    Article  CAS  Google Scholar 

  8. McCarty J.P., Ecological Consequence of Recent Climate Change, Conserv. Biol., 2001, 15, 320–331

    Article  Google Scholar 

  9. Fagan W.F., Fortin M.J., Soykan C., Integrating Edge Detection and Dynamic Modeling in Quantitative Analyses fo Ecological Boundaries, Bioscience, 2003, 53, 730–738

    Article  Google Scholar 

  10. Wiens J.A., Ecological flows across landscape boundaries: A conceptual overview, In: Hansen A.J., di Castri F., (Eds.), Landscape boundaries: Consequences for Biotic Diversity and Ecological Flows, Springer-Verlag, New York, 1992

    Google Scholar 

  11. Fagan W.F., Cantrell R.S., Cosner C., How habitat edges change species interactions, Am. Nat., 1999, 153, 165–182

    Article  Google Scholar 

  12. Laurance W.F., Didham R.K., Power M.E., Ecological boundaries: A search for synthesis, Trends Ecol. Evol., 2001, 16, 70–71

    Article  Google Scholar 

  13. Cadenasso M.L., Picket S.T.A., Weathers K.C., Jones C.G., A framework for a theory of ecological boundaries, Bioscience, 2003, 53, 750–758

    Article  Google Scholar 

  14. Risser P.G., The status of the science examining ecotones, Bioscience, 1995, 45, 318–325

    Article  Google Scholar 

  15. O’Neill R.V., Johnson A.R., King A.W., A hierarchical framework for the analysis of scale, Landscape Ecol., 1989, 3, 193–205

    Article  Google Scholar 

  16. Strayer D.L., Power M.E., Fagan W.F., Pickett S.T.A., Belnap J., A classification of ecological boundaries, Bioscience, 2003, 53, 723–729

    Article  Google Scholar 

  17. Bailey R.G., Delineation of ecosystem regions, Environ. Manage., 1983, 7, 365–373

    Article  Google Scholar 

  18. Hargrove W., Hoffman F., Using multivariate clustering to characterize ecoregions borders, Comput. Sci. Eng., 1999, 1, 18–25

    Article  Google Scholar 

  19. Zadeh L.A., Fuzzy Sets, Inform. Control, 1965, 8, 338–353

    Article  Google Scholar 

  20. Wang F., Hall G.B., Fuzzy representation of geographic boundaries in GIS. Int. J. Geogr. Inf. Sci., 1996, 10, 573–590.

    Google Scholar 

  21. Burrough P., Frank A.U., (Eds.), Geographic OBJECTS with Indeterminate Boundaries, Taylor and Francis, London, 1996

    Google Scholar 

  22. Lark R.M., Forming spatially coherent regions by classification of multi-variate data: An example from the analysis of maps of crop yield, Int. J. Geogr. Inf. Sci., 1998, 12, 83–98.

    Article  Google Scholar 

  23. Usery E.L., A Conceptual framework and Fuzzy Set Implementation for Geographic Features, In: Burrough P.A., Frank A.U., (Eds.), Geographic Objects with Indeterminate Boundaries, Taylor and Francis, London, 1996

    Google Scholar 

  24. Lark R.M., Forming spatially coherent regions by classification of multi-variate data: An example from the analysis of maps of crop yield, Int. J. Geogr. Inf. Sci., 1998, 12, 83–98

    Article  Google Scholar 

  25. O’Riordan T., Environmental science on the move, In: O’Riordan T., (Ed.), Environmental Science for Environmental Management, Prentice Hall, Harlow, 2001

    Google Scholar 

  26. Jacquez G.M., Maruca S., Fortin M.J., From fields to objects: a review of geographic boundary analysis, J. Geogr. Syst., 2000, 2, 221–241

    Article  Google Scholar 

  27. Griffith D.A., A spatially adjusted ANOVA model, Geogr. Anal., 1978, 10, 296–301

    Article  Google Scholar 

  28. Legendre P., Oden N.L., Sokal R.R., Vaudor A., Kim J., Approximate Analysis of Variance of Spatially Autocorrelated Regional Data, J. Classif., 2005, 7, 53–75

    Article  Google Scholar 

  29. Cliff A.D., Ord J.K., Spatial Processes: Models and Applications, Pion, London, 1981

    Google Scholar 

  30. Hong N., White J.G., Gumpertz M.L., Weisz R., Spatial Analysis of Precision Agriculture Treatments in Randomized Complete Blocks: Guidelines for Covariance Model Selection, Agron. J., 2005, 97, 1082–1096

    Article  Google Scholar 

  31. Parrish J.A.D., Bazzaz F.A., Ontogenetic shifts in response to environmental gradients in oldfield annuals, Ecology, 1985, 66, 1296–1302

    Article  Google Scholar 

  32. Økland R.H., Vegetation ecology: theory, methods and applications with reference to Scandinavia, Sommerfeltia, 1990, Suppl. 1, 1–233

  33. Diekmann M., Lawesson J.E., Shifts in ecological behaviour of herbaceous forest species along a transect from Northern central to North Europe, Folia Geobot., 1999, 34, 127–141

    Article  Google Scholar 

  34. Schaffers A.P., Sýkora K.V., Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements, J. Veg. Sci., 2000, 11, 225–244

    Article  Google Scholar 

  35. Schmidtlein S., Imaging spectroscopy as a tool for mapping Ellenberg indicator values, J. Appl. Ecol., 2005, 42, 966–974

    Article  Google Scholar 

  36. Petřík P., Bruelheide H., Species groups can be transferred across different scales, J. Biogeogr., 2006, 33, 1628–1642

    Article  Google Scholar 

  37. Diekmann M., Species indicator values as an inportant tool in applied ecology — a review, Basic Appl. Ecol., 2003, 4, 193–506

    Article  Google Scholar 

  38. Jongman R.H.G., ter Braak C.J.F., van Tongeren O.F.R., Data analysis in community and landscape ecology, Pudoc, Wageningen, 1987

    Google Scholar 

  39. ter Braak C.J.F., Barendregt L.G., Weighted averaging of species indicator values; its efficiency in environmental calibration, Math. Biosci., 1986, 78, 57–72

    Article  Google Scholar 

  40. Kowarik I., Seidling W., The use of Ellenberg’s indicator values — problems and restrictions of the method, [Zeigerwerdberechnungen nach Ellenberg — Zu Problemen und Einschränkungen einer sinnvollen Methode], Landschaft und Stadt, 1989, 21, 132–143 (in German)

    Google Scholar 

  41. Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulißen D., Indicator values of plant in Central Europe, [Zeigerwerte von Pflanzen in Mitteleuropa], 2nd ed., Scr. Geobot., 1992, 18, 1–258 (in German)

    Google Scholar 

  42. Käfer J., Witte J.P.M., Cover-weighted averaging of indicator values in vegetation analyses, J. Veg. Sci., 2004, 15, 647–652

    Article  Google Scholar 

  43. Turisová I., Hlásny T., Identification of phytogeographical borders using grassland vegetation data, Biologia, 2010, 65, 630–638

    Article  Google Scholar 

  44. Tansley A.G., Chip T.F., Aims and Methods in the Study of Vegetation, Whitefriars, London, 1926

    Google Scholar 

  45. Šeffer J., Stanová V., Lasák R., Galvánek D., Viceníková A., Mapping of grassland vegetation of Slovakia, [Mapovanie travinnej vegetácie Slovenska], 2nd ed., Daphne — Centrum pre aplikovanú ekológiu, Bratislava, 2000 (in Slovak)

    Google Scholar 

  46. Tichý L., Juice, software for vegetation classification, J. Veg. Sci., 2002, 13, 451–453

    Article  Google Scholar 

  47. Barbujani G., Oden N.L., Sokal R., Detecting areas of abrupt change in maps of biological variables, Syst. Zool., 1989, 38, 376–389

    Article  Google Scholar 

  48. Womble W.H., Differential systematics, Science, 1951, 114, 315–322.

    Article  PubMed  CAS  Google Scholar 

  49. Rossi R.E., Mulla D.J., Journel A.G., Franz E.H., Geostatistical tools for modeling and intepreting ecological spatial dependence, Ecol. Monogr., 1992, 62, 277–314

    Article  Google Scholar 

  50. Liebhold A.M., Rossi R.E., Kemp W.P., Geostatistics and geographic information systems in applied insect ecology, Annu. Rev. Entomol., 1993, 38, 303–327

    Article  Google Scholar 

  51. Sokal R.R., Oden N.L., Thomson B.A., Local spatial autocorrelation in a biological model, Geogr. Anal., 1998, 30, 331–354

    Article  Google Scholar 

  52. Fortin M.J., Olson R.J., Ferson S., Iverson L., Hunsaker C., Edwards G., et al., Issues related to the detection of boundaries, Landscape Ecol., 2000, 15, 453–466

    Article  Google Scholar 

  53. Fortin M.J., Dale M., Spatial Analysis: A guide for ecologists, Cambridge University Press, Cambridge, 2005

    Google Scholar 

  54. Bocquet-Appel J.P., Bacro J.N., Generalized Wombling, Syst. Biol., 1994, 43, 442–448

    Google Scholar 

  55. Lu H., Carlin B.P., Bayesian Areal Wombling for geographical boundary analysis, Geogr. Anal., 2005, 37, 265–285

    Article  Google Scholar 

  56. Dengler J., Jansen F., Glöckler F., Peet R.K., de Cáceres M., Chytrý M., et al., The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science, J. Veg. Sci., 2011, 22, 582–597

    Article  Google Scholar 

  57. Wamelink G.W.W., Joosten V., van Dobben H.F., Berendse F., Validity of Ellenberg indicator values judged from physico-chemical field measurements, J. Veg. Sci., 2002, 13, 269–278

    Article  Google Scholar 

  58. Ewald J., The sensitivity of Ellenberg indicator values to the completeness of vegetation relevés, Basic Appl. Ecol., 2003, 4, 507–513

    Article  Google Scholar 

  59. Csillag F., Boots B., Fortin M.J., Lowell K., Potvin F., Multiscale Characterization of Boundaries and Landscape Ecological Patterns, Geomatica, 2001, 55, 509–522

    Google Scholar 

  60. Kadmon R., Danin A., Floristic variation in Israel: a GIS analysis, Flora, 1997, 192, 341–345

    Google Scholar 

  61. Chytrý M., Grulich V., Tichý L., Kouřil M., Phytogeographical boundary between Pannonicum and Hercynicum: a multivariate analysis of landscape in the Podyjí/Thayatal National Park, Czech Republic/Austria, Preslia, 1999, 71, 1–19

    Google Scholar 

  62. Lososová Z., Simonová D., Changes in a synantropic vegetation, Preslia, 2008, 80, 291–305

    Google Scholar 

  63. Goovaerts P., Geostatistics for Natural Resources Evaluation, Oxford University Press, New York, 1997

    Google Scholar 

  64. Chiles J.P., Delfiner P., Geostatistics: Modeling Spatial Uncertainty, John Wiley & Sons, New York 1999

    Google Scholar 

  65. Lantuéjoul Ch., Geostatistical Simulations. Models and Algorithms, Verlag Print, Berlin, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Hlásny.

About this article

Cite this article

Hlásny, T., Turisová, I. Spatial modelling-based approach to phytogeographical regionalization using grassland vegetation data. cent.eur.j.biol. 7, 318–326 (2012). https://doi.org/10.2478/s11535-012-0006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-012-0006-7

Keywords

Navigation