Central European Journal of Biology

, Volume 7, Issue 2, pp 230–240 | Cite as

On-line cell lysis of bacteria and its spores using a microfluidic biochip

  • Marianna Cíchová
  • Miloslava Prokšová
  • Lívia Tóthová
  • Hunor Sántha
  • Viktor Mayer
Research Article
  • 222 Downloads

Abstract

Optimal detection of pathogens by molecular methods in water samples depends on the ability to extract DNA rapidly and efficiently. In this study, an innovative method was developed using a microfluidic biochip, produced by microelectrochemical system technology, and capable of performing online cell lysis and DNA extraction during a continuous flow process. On-chip cell lysis based on chemical/physical methods was performed by employing a sufficient blend of water with the lysing buffer. The efficiency of lysis with microfluidic biochip was compared with thermal lysis in Eppendorf tubes and with two commercial DNA extraction kits: Power Water DNA isolation kit and ForensicGEM Saliva isolation kit in parallel tests. Two lysing buffers containing 1% Triton X-100 or 5% Chelex were assessed for their lysis effectiveness on a microfluidic biochip. SYBR Green real-time PCR analysis revealed that cell lysis on a microfluidic biochip using 5% Chelex buffer provided better or comparable recovery of DNA than commercial isolation kits. The system yielded better results for Gram-positive bacteria than for Gram-negative bacteria and spores of Gram-positive bacteria, within the limits of detection at 103 CFU/ml. During the continuous flow process in the system, rapid cells lysis with PCR-amplifiable genomic DNA were achieved within 20 minutes.

Keywords

Cell lysis Chelex 100 Microfluidic biochip SYBR Green real-time PCR Waterborne pathogens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Prüss A., Kay D., Fewtrell L., Bartram J., Estimating the burden of disease from water, sanitation, and hygiene at a global level, Environ. Health Perspect, 2002, 110, 5537–5542CrossRefGoogle Scholar
  2. [2]
    Khan A.S., Swedlow D.L., Juranek D.D., Precautions against biological and chemical terrorism directed at food and water supplies, Public Health Rep., 2001, 116, 3–14PubMedGoogle Scholar
  3. [3]
    WHO, Guidelines for drinking-water quality, 3rd ed., Recommendations, Geneva, World Health Organization, 2004Google Scholar
  4. [4]
    Rompré A., Servais P., Baudart J., De-Roubin M.R., Laurent P., Detection and enumeration of coliforms in drinking water: currenr methods and emerging approaches, J Microbiol. Methods, 2002, 49, 31–54PubMedCrossRefGoogle Scholar
  5. [5]
    Alexandrino M., Grohmann E., Szewzyk U., Optimization of PCR-based methods for rapid detection of Campalobacter jejuni, Campylobacter coli and Yersinia enterocolitica serovar 0:3 in wastewater samples, Water Res., 2004, 38, 1340–1346PubMedCrossRefGoogle Scholar
  6. [6]
    Northrup M.A, Ching M.T, White R.M, Watson R.T., DNA amplification with a microfabricated reaction chamber. In: Proceedings of Transducers’ 93, the Seventh International Conference on Solid-State Sensors and Actuators (7–10 June, 1993, Yokohama, Japan), New York Institute of Electrical and Electronic Engineers, 1993, 924–926Google Scholar
  7. [7]
    Fan Z.H, Mangru S., Granzow R., Heaney P., Ho W., Dong, Q. et al., Dynamic DNA hybridization on a chip using paramagnetic beads, Anal Chem, 1999, 71, 4851–4859PubMedCrossRefGoogle Scholar
  8. [8]
    Kwakye S., Goral V.N., Baeumner A.J., Electrochemical microfluidic biosensor for nucleic acid detection with integrated minipotentiostat, Biosens. Bioelectron., 2006, 21, 2217–2223PubMedCrossRefGoogle Scholar
  9. [9]
    Soumet C., Ermel G., Fach P., Colin P., Evaluation of different DNA extraction procedures for the detection of Salmonella from chicken products by polymerase chain reaction, Lett. Appl. Microbiol., 1994, 19, 294–298PubMedCrossRefGoogle Scholar
  10. [10]
    Goldenberger D., Perschil I., Ritzler, M. Altwegg, M., A simple ‘universal’ DNA extraction procedure using SDS and proteinase K is compatible with direct DNA amplification PCR, Genome Res., 1995, 4, 368–370CrossRefGoogle Scholar
  11. [11]
    Taylor M.T., Belgrader P., Furman B.J., Pourahmadi F., Kovacs G.T.A., Northrup, M.A., Lysing bacterial spores by sonication through a flexible interface in a microfluidic system, Anal. Chem., 2001, 73, 492–496PubMedCrossRefGoogle Scholar
  12. [12]
    Keshavaraz-Moore E., Hoare M., Dunnill P., Disruption of Baker’syeast in a high-pressure homogenizer: New evidence on mechanism, Enzyme Microb. Technol., 1990, 12, 764–770CrossRefGoogle Scholar
  13. [13]
    Han F., Wang Y., Sims C.E., Bachman M., Chang R., et al., Fast electrical lysis of cells for capillary electrophoresis, Anal. Chem., 2003, 75, 3688–3696PubMedCrossRefGoogle Scholar
  14. [14]
    Gao J., Yin X.F., Fang Z.L., Integration of single cell injections, cell lysis, separation and detectionof intracellular constituents on a microfluidic chip, Lab Chip, 2004, 4, 24–52CrossRefGoogle Scholar
  15. [15]
    Xing Ch., Da-fu C., Changchun L., On-line cell lysis and DNA extraction on a microfluidic biochip fabricated by microelectromechanical system technology, Electrophoresis, 2008, 29, 1844–1851CrossRefGoogle Scholar
  16. [16]
    Sethu P., Anahtar M., Moldawer L.L., Continuous row microfluidic device for rapid erythrocyte lysis, Anal. Chem., 2004, 76, 6247–6253PubMedCrossRefGoogle Scholar
  17. [17]
    Mahalanabis M., Al-Muayad H., Kulinski D., Altman D., Klapperich C.M., Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip, Lab Chip, 2009, 9, 2811–2817PubMedCrossRefGoogle Scholar
  18. [18]
    Lee J.G, Cheong K.H., Huh N., Kim S., Choi J.W., Ko, C.H., Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification, Lab Chip, 2006, 5, 886–895CrossRefGoogle Scholar
  19. [19]
    Rawsthorne H., Dock C.N., Jaykus L.A., PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores, Appl. Environ. Microbiol., 2009, 75, 2936–2939PubMedCrossRefGoogle Scholar
  20. [20]
    Werners K., Heuvelman C.J., Chakraborty T., Notermans S.H.W., Use of the polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese, J. Appl. Bacteriol., 1991, 70, 121–126CrossRefGoogle Scholar
  21. [21]
    Khan I.U., Yaday J.S., Development of a singletube, cell lysis-based, genus-specific PCR method for rapid identification of mycobacteria, optimization of cell lysis, PCR primers and conditions and restriction pattern analysis, J. Clin. Microbiol., 2004, 42, 453–457PubMedCrossRefGoogle Scholar
  22. [22]
    Suenaga E., Nakamura H., Evaluation of three methods for effective extraction of DNA from human hair, J. Chromatogr. B., 2005, 820, 137–141CrossRefGoogle Scholar
  23. [23]
    Drahovska H., Turna J., Piknova E., Kuchta T., Szitasova, I. et al., Detection of Salmonella by polymerase chain reaction targeted to fimC gene, Biologia, 2001, 56, 611–616Google Scholar
  24. [24]
    Ke D., Picard F.J., Martineau F., Ménard C.H., Roy P.H., Development of a PCR assay for rapid detection of enterococci, J. Clin. Microbiol., 1999, 37, 3497–3503PubMedGoogle Scholar
  25. [25]
    Aldous W.K., Pounder J.I., Cloud J.L., Woods G.L., Comparison of six methods of extracting Mycobaterium tuberculosis DNA from processed sputum for testing by quantitative real-time PCR, J.Clin. Microbiol., 2005, 43, 2471–2473PubMedCrossRefGoogle Scholar
  26. [26]
    Gonzalez Garcia L.A., Rodrigo Tapia J.P., Sanchez L.P., Ramos S., Suarez N.C., DNA extraction using chelex resin for the oncogenic amplification analysis in head and neck tumours, Acta Otorinolaringol. Esp., 2004, 55, 139–144Google Scholar
  27. [27]
    Aranishi F., Okimoto T., A simple and reliable method for DNA extraction from bivalve mantle, J. Appl. Genet., 2006, 47, 251–254PubMedCrossRefGoogle Scholar
  28. [28]
    Desloire S., Valiente Moro, C., Chauve, C., Zenner, L., Comparison of four methods of extracting DNA from D. Gallinae, Vet. Res., 2006, 25, 725–732CrossRefGoogle Scholar
  29. [29]
    Burns M.A., Johnson B.N., Brahmasandra S.N., Handique K., An integrated nanoliter analysis device, Science, 1998, 282, 484–487PubMedCrossRefGoogle Scholar
  30. [30]
    Karle M., Miwa J., Czilwik G., Auwärter V., Roth G., Zengerle R,. Von Stetten F., Continuous microfluidic DNA extraction using phase-transfer magnetophoresis, Lab Chip, 2010, 10, 3284–3290PubMedCrossRefGoogle Scholar
  31. [31]
    Carlo D.D, Jeong K.H, Lee L.P, Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation, Lab Chip, 2003, 3, 287–291PubMedCrossRefGoogle Scholar
  32. [32]
    Waters L.C., Jacobson S.C., Kroutchinina N., Khandurina J., Foote R.S., Ramsey J.M., Multiplex sample PCR amplification and electrophoretic analysis on a microchip, Anal. Chem, 1998, 70, 5172–5176PubMedCrossRefGoogle Scholar
  33. [33]
    Lee S.W., Tai I.C., Micro cell lysis device, Sensor. Actuat. A-Phys., 1999, 73, 74–79CrossRefGoogle Scholar
  34. [34]
    LaMontagne M.G., Michel F.C., Jr. Holden P.A., Reddy C.A., Evaluation of extraction and purification methods for obtaining PCRamplifiable DNA from compost for microbial community Analysis, J Microbiol Methods, 2002, 49, 255–264PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Marianna Cíchová
    • 1
  • Miloslava Prokšová
    • 1
  • Lívia Tóthová
    • 1
  • Hunor Sántha
    • 2
  • Viktor Mayer
    • 2
  1. 1.Water Research InstituteNational Water Reference Laboratory in SlovakiaBratislavaSlovak Republic
  2. 2.Department of Electronics TechnologyBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations