Skip to main content
Log in

Modulation of Escherichia coli biofilm growth by cell-free spent cultures from lactobacilli

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

E. coli biofilms cause serious problems in medical practice by contaminating surfaces and indwelling catheters. Due to the rapid development of antibiotic resistance, alternative approaches to biofilm suppression are needed. This study addresses whether products released by antagonistic bacteria — Lactobacillus isolates from vaginal and dairy-product samples could be useful for controlling E. coli biofilms. The effects of diluted cell-free supernatants (CFS) from late-exponential Lactobacillus cultures on the growth and biofilm production of Escherichia coli were tested. Most of the CFS applied as 10−2 had no impact on bacterial growth, biofilm development however was influenced even by 10−4 of CFS. Initial screening by crystal violet assay showed that biofilm modulation varied between different CFS and E. coli combinations from inhibition to activation; however three of the tested CFS showed consistency in biofilm suppression. This was not due to antibacterial activity since Live/Dead fluorescence labeling showed insignificant differences in the amount of dead cells in control and treated samples. Some E. coli strain-specific mechanisms of response to the three CFS included reduction in hydrophobicity and motility. Released exoploysaccharides isolated from the three CFS stimulated sessile growth, but proteinase K reduced their inhibitory activities implying participation of protein or peptide biofilm suppression factor(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soto S.M., Smithson A., Horcajada J.P., Martinez J.A., Mensa J.P., Vila J., Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli, Clin. Microbiol. Infect., 2006, 10, 1034–1036

    Article  Google Scholar 

  2. Cribby S., Taylor M., Reid G., Vaginal microbiota and the use of probiotics, Interdiscip. Perspect. Infect. Dis., 2008, doi:10.1155/2008/256490

  3. Donlan R.M., Biofilms and device-associated infections, Emerg. Infect. Dis., 2001, 7, 277–281

    Article  PubMed  CAS  Google Scholar 

  4. Jacobsen S.M., Stickler D.J., Mobley H.L.T., Shirtliff M.E., Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis, Clin. Microbiol. Rev., 2008, 21, 26–59

    Article  PubMed  CAS  Google Scholar 

  5. Macleod S.M., Stickler D., Species interactions in mixed-community crystalline biofilms on urinary catheters, J. Med. Microbiol., 2007, 56, 1549–1557

    Article  PubMed  Google Scholar 

  6. Blango M.G., Mulvey M.A., Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics, Antimicr. Agents. Chemother., 2010, 54, 1855–1863

    Article  CAS  Google Scholar 

  7. Stickler D.J., Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a perspective from the study of catheter biofilms, J. Appl. Microbiol. Symp. Suppl., 2002, 92, 163S–170S

    Google Scholar 

  8. Burmølle M., Webb J.S., Rao D., Hansen L.H., Sørensen S.J., Kjelleberg S., Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms, Appl. Environ. Microbiol., 2006, 72, 3916–3923

    Article  PubMed  Google Scholar 

  9. Moons P., Van Houdt R., Aertsen A., Vanoirbeek K., Engelborghs Y., Michiels C.W., Role of quorum sensing and antimicrobial component production by Serratia plymuthica in formation of biofilms, including mixed biofilms with Escherichia coli, Appl. Environ. Microbiol., 2006, 72, 294–7300

    Article  Google Scholar 

  10. Pereira A.L., Silva T.N., Gomes A.C.M.M., Araujo A.C.G., Giugliano L., Diarrhea-associated biofilm formed by enteroaggregative Ecsherichia coli and aggregative Citrobacter freundii: a consortium mediated by putative F pili, BMC Microbiology, 2010, 10:57

    Article  PubMed  Google Scholar 

  11. Boris S., Barbes C., Role played by lactobacilli in controlling the population of vaginal pathogens, Microbes Infect., 2000, 2, 543–546

    Article  PubMed  CAS  Google Scholar 

  12. Reid G., Howard J., Gan B.S., Can bacterial interference prevent infection?, Trends Microbiol., 2001, 9, 424–428

    Article  PubMed  CAS  Google Scholar 

  13. Verlaeds M.M., van der Belt-Gritter B., Busscher H.J., Reid G., van der Mei H.C., Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli -a teleologic approach, World J. Urol., 2000 18, 422–426

    Article  Google Scholar 

  14. Ruiz F.O., Gerbaldo G., Asurmendi P., Pascual L.M., Giordano V., Barberis I.L., Antimicrobial activity, inhibition of urogenital pathogens, and synergistic interactions between Lactobacillus strains, Curr. Microbiol., 2009, 59:497–501

    Article  PubMed  CAS  Google Scholar 

  15. Tomas M.S.J., Ocana V.S., Wiese B Nader-Macias M.E., Growth and lactic acid production by vaginal Lactobacillus acidophilus CRL 1259, and inhibition of uropathogenic Escherichia coli, J. Med. Microbiol., 2003, 52, 1117–1124

    Article  CAS  Google Scholar 

  16. Tsai C.C., Lin P.P., Hsieh Y.M., Three Lactobacillus strains from healthy infant stool inhibit enterotoxigenic Escherichia coli grown in vitro, Anaerobe, 2008, 14, 61–67

    Article  PubMed  CAS  Google Scholar 

  17. Cadieux P.A., Burton J.P., Devillard E., Reid G., Lactobacillus by-products inhibit the growth and virulence of uropathogenic Escherichia coli, J. Physiol. Pharmacol., 2009, 60, 13–18

    PubMed  Google Scholar 

  18. Saunders S., Bocking A., Challis J., Reid G., Effect of Lactobacillus challenge on Gardenerella vaginalis biofilms, Colloids Surf B Biointerfaces, 2007, 55. 138–142

    Article  PubMed  CAS  Google Scholar 

  19. McMillan A., Dell M., Zellar M.P., Cribby S., Martz S., Hong E., et al., Disruption of urogenital biofilms by lactobacilli, Colloids Surf B Biointerfaces, 2011, 86, 58–64

    Article  PubMed  CAS  Google Scholar 

  20. Söderling E.M., Martinen A.M., Haukioja A.L., Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro, Curr. Microbiol., 2011, 62,.618–622

    Article  PubMed  Google Scholar 

  21. Miyazaki Y., Kamiya H., Hanawa T., Fukuda M., Kawakami H., Takahashi H., et al., Efect of probiotic bacterial strains of Lactobacillus, Bifidobacterium, and Enterococcus on enteroaggregative Escherichia coli, J. Infect. Chemother., 2010, 16, 10–18

    Article  PubMed  Google Scholar 

  22. Georgieva R.N., Iliev I.N., Chipeva V.A., Dimitonova S.P., Samelis J., Danova S.T., Identification and in vitro characterisation of L. plantarum strains from artisanal Bulgarian white brined cheeses, J. Basic. Microbiol., 2008, 48, 234–244

    Article  PubMed  CAS  Google Scholar 

  23. Petrova M., Georgieva R., Dimitonova S., Ivanovska N., Hadjieva N., Danova S., Inhibitory activity of vaginal lactobacilli against human pathogens, Biotechnol. Biotechnol. Eq., 2009, 23, 627–631

    Google Scholar 

  24. Petrova M., Georgieva R., Dojchinovska L., Kirilov N., Iliev I., Antonova S., et al., Lactic acid bacteria against pathogenic microbes, Tracia J. Sci., 2009, 7, 33–39

    Google Scholar 

  25. Marhova M., Kostadinova S., Stoitsova S., Biofilmforming capabilities of urinary Escherichia coli isolates, Biotechnol. Biotechnol. Eq., 2010, 24, 589–593

    Google Scholar 

  26. Dimitonova S.P., Bakalov B.V., Aleksandrova-Georgieva R.N., Danova S.T., Phenotypic and molecular identification of vaginal Lactobacillus isolates from Bulgarian women, J. Microbiol. Immunol. Infect., 2008, 41, 469–477

    PubMed  CAS  Google Scholar 

  27. Dimitonova S.P., Biological properties of vaginal lactobacilli, PhD thesis, Sofia University, Sofia, Bulgaria, 2007 (in Bulgarian)

    Google Scholar 

  28. Georgieva R., Characterisation of Lactobacillus plantarum strains with probiotic properties — a basis for functional foods, PhD thesis, Institute of Microbiology, Sofia, Bulgaria, 2010 (in Bulgarian)

    Google Scholar 

  29. Li J., McLandsborough L.A., The effects of the surface charge and hydrophobicity of Escherichia coli on its adhesion to beef muscle, Int. J. Food Microbiol., 1999, 53, 185–193

    Article  PubMed  CAS  Google Scholar 

  30. Chorianopoulos N.G., Giaouris E.D., Kourkoutas Y., Nychas G.J., Inhibition of early stage of Salmonella enterica serovar Enteritidis biofilm development on stainless steel by cell-free supernatant of Hafnia alvei culture, Appl. Environ. Microbiol., 2010, 76, 2018–2022

    Article  PubMed  CAS  Google Scholar 

  31. Dheilly A., Soum-Soutera E., Klein G.L., Compere C., Haras D., Dufour A., Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. Strain 3J6, Appl. Environ. Microbiol., 2010, 76, 3452–3461

    Article  PubMed  CAS  Google Scholar 

  32. Holocombe L.J., McAlester G., Munro C.A., Enjalbert B., Brown A.J., Gow N.A., et al., Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans, Microbiology, 2010, 156, 1476–1486

    Article  Google Scholar 

  33. Lopes S.P., Machado I., Pereira M.O., Role of planktonic and sessile extracellular metabolic byproducts on Pseudomonas aeruginosa and Escherichia coli intra and interspecies relationships, J. Ind. Microbiol. Biotechnol., 2011, 38, 133–140

    Article  PubMed  CAS  Google Scholar 

  34. Qin Z., Yang L., Qu D., Molin S., Tolker-Nielsen T., Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis, Microbiology, 2009, 155, 2148–2156

    Article  PubMed  CAS  Google Scholar 

  35. Simões L.C., Simões M., Vieira M., The effects of metabolite molecules produced by drinking water-isolated bacteria on their single and multispecies biofilms, Biofouling, 2011, 27, 685–699

    Article  PubMed  Google Scholar 

  36. Kim Y., Sejong O.H., Kim S.H., Released exopolysaccharide (r-EPS) from probiotic bacteria reduce biofilm formation of enterohaemorrhagic Escherichia coli O157:H7, Biochem. Biophys. Res. Commun., 2009, 379, 324–329

    Article  PubMed  CAS  Google Scholar 

  37. Christopher A.B., Arndt A., Cugini C., Davey M.E., A streptococcal effector protein that inhibits Porphyrominas gingivalis biofilm development, Microbiology, 2010 156, 3469–3477

    Article  PubMed  CAS  Google Scholar 

  38. Kumada M., Motegi M., Nakao R., Yonezawa H., Yamamura H., Tagami J., et al., Inhibiting effects of Enterococcus faecium non-biofilm strain on Streptococcus mutans biofilm formation, J. Microbiol. Immunol. Infect., 2009, 42, 188–196

    PubMed  CAS  Google Scholar 

  39. Valle J., Henry N., Fontaine T., Balestrino D., Latour-Lambert P., Ghigo J.M., Broad-spectrum biofilm inhibiton by a secreted bacterial polysaccharide, Proc. Natl. Acad. Sci. USA, 2006, 103, 12558–12563

    Article  PubMed  CAS  Google Scholar 

  40. Schuhmann E., Taubeneck U., Stabile L-formen verschiedener Escherichia coli stämme, Z. Allg. Microbiol., 1969, 9, 297–313

    Article  CAS  Google Scholar 

  41. Torosyan M.V., Shishkova O., Rabinkova E., Selection and characterization of UV-resistant revertants of recA strains of Escherichia coli K-12, Genetika, 1974, 10, 123–132

    CAS  Google Scholar 

  42. Marhova M., Kostadinova S., Stoitsova S., Antimicrobial resistance profiles of urinary Escherichia coli isolates, Biotechnol. Biotechnol. Eq., 2009, 23, 616–620

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stoyanka R. Stoitsova.

About this article

Cite this article

Vacheva, A., Georgieva, R., Danova, S. et al. Modulation of Escherichia coli biofilm growth by cell-free spent cultures from lactobacilli. cent.eur.j.biol. 7, 219–229 (2012). https://doi.org/10.2478/s11535-012-0004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-012-0004-9

Keywords

Navigation