Skip to main content

Properties of shrubforest edges: a case study from South Hungary


Knowledge on edge properties is important from a conservation perspective. Our study was carried out in the ancient vegetation mosaic of the Villány Mts, South-Hungary. Sampling was conducted along eight transects, each running from a rock sward through a shrubforest patch into another rock sward. Unlike most studies, we identified edge position objectively, using a moving split-window analysis. Five habitat types along each transect were distinguished: north-facing rock sward interior, north-facing edge, shrubforest interior, south-facing edge, and south-facing rock sward interior. In the forty 2 m2 plots, a total of 157 species were found. Species richness and Shannon-diversity of the edges was higher than those of the shrubforest interiors, but not significantly different from the rock swards. Cover did not differ significantly among habitat types. We found only a few edge-related species. No differences between differently-oriented edges were revealed. Species composition of the edges was influenced mostly by the rock sward matrix. We hypothesize that ecological conditions of the edges resemble those of the rock sward interiors. Thus, sward species can penetrate into shrubforest edges, entailing a similar composition of edges and rock swards, resulting in similar diversities. Edges might be viewed as refugia for valuable plants of rock swards.

This is a preview of subscription content, access via your institution.


  1. [1]

    Yarrow M.M., Marín V.H., Toward conceptual cohesiveness: a historical analysis of the theory and utility of ecological boundaries and transition zones, Ecosystems, 2007, 10, 462–476

    Article  Google Scholar 

  2. [2]

    Kark S., van Rensburg B.J., Ecotones: marginal or central areas of transition?, Isr. J. Ecol. Evol., 2006, 52, 29–53

    Article  Google Scholar 

  3. [3]

    Ries L., Fletcher R.J. Jr., Battin J., Sisk T.D., Ecological responses to habitat edges: mechanisms, models, and variability explained, Annu. Rev. Ecol. Evol. Syst., 2004, 35, 491–522

    Article  Google Scholar 

  4. [4]

    Strayer D.L, Power M.E., Fagan W.F., Pickett S.T.A., Belnap J., A classification of ecological boundaries, BioScience, 2003, 33, 723–729

    Article  Google Scholar 

  5. [5]

    Odum E.P., Fundamentals of Ecology, 3rd Ed., W.B. Saunders, Philadelphia, 1971

    Google Scholar 

  6. [6]

    Pianka E.R., Evolutionary ecology, 3rd Ed., Harper and Row, New York, 1983

    Google Scholar 

  7. [7]

    Chiras D.D., Environmental science: action for a sustainable future, 3rd Ed., Benjamin/Cummings, Redwood City, 1991

    Google Scholar 

  8. [8]

    Risser P.G., The Status of the Science Examining Ecotones, BioScience, 1995, 45, 318–325

    Article  Google Scholar 

  9. [9]

    Brown J.H., Gibson A.C., Biogeography, C.V. Mosby, St. Louis, 1983

  10. [10]

    van Leeuwen C.G., A relation theoretical approach to pattern and process in vegetation, Wentia, 1966, 15, 25–46

    Google Scholar 

  11. [11]

    van der Maarel E., On the establishment of plant community boundaries, Ber. Deut. Bot. Ges., 1976, 89, 415–443

    Google Scholar 

  12. [12]

    van der Maarel E., Ecotones and ecoclines are different, J. Veg. Sci., 1990, 1, 135–138

    Article  Google Scholar 

  13. [13]

    Lloyd K.M., McQueen A.A.M., Lee B.J., Wilson R.C.B., Walker S., Wilson J.B., Evidence on ecotone concepts from switch, environmental and anthropogenic ecotones, J. Veg. Sci., 2000, 11, 903–910

    Article  Google Scholar 

  14. [14]

    Stowe C.J., Kissling W.D., Ohlemüller R., Wilson J.B., Are ecotone properties scale-dependent? A test from a Nothofagus treeline in southern New Zealand, Community Ecol., 2003, 4, 35–42

    Article  Google Scholar 

  15. [15]

    Zólyomi B., Coenotone, ecotone and their role in preserving relic species, Acta Bot. Hung., 1987, 33, 3–18

    Google Scholar 

  16. [16]

    Young A., Mitchell N., Microclimate and vegetation edge effects in a fragmented Podocarp-broadleaf forest in New Zealand, Biol. Conserv., 1994, 67, 63–72

    Article  Google Scholar 

  17. [17]

    Chen J., Franklin J.F., Spies T.A., Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests, Ecol. Appl., 1995, 5, 74–86

    Article  Google Scholar 

  18. [18]

    Gehlhausen S.M., Schwartz M.W., Augspurger C.K., Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments, Plant Ecol., 2000, 147, 21–35

    Article  Google Scholar 

  19. [19]

    Harper K.A., MacDonald S.E., Burton P.J., Chen J., Brosofske K.D., Saunders S.C., et al., Edge influence on forest structure and composition in fragmented landscapes, Conserv. Biol., 2005, 19, 768–782

    Article  Google Scholar 

  20. [20]

    Jules E.S., Shahani P., A broader ecological context to habitat fragmentation: Why matrix habitat is more important than we thought, J. Veg. Sci., 2003, 14, 459–464

    Article  Google Scholar 

  21. [21]

    Kupfer J.A., Malanson G.P., Franklin S.B., Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects, Global Ecol. Biogeogr., 2006, 15, 8–20

    Article  Google Scholar 

  22. [22]

    Matlack G.R., Vegetation dynamics of the forest edge — trends in space and successional time, J. Ecol., 1994, 82, 113–123

    Article  Google Scholar 

  23. [23]

    Harper K.A., Macdonald S.E., Structure and composition of edges next to regenerating clearcuts in mixed-wood boreal forest, J. Veg. Sci., 2002, 13, 535–546

    Article  Google Scholar 

  24. [24]

    Santos A.M.M., Santos B.A., Are the vegetation structure and composition of the shrubby Caatinga free from edge influence?, Acta Bot. Bras., 2008, 22, 1077–1084

    Article  Google Scholar 

  25. [25]

    Armand A.D., Sharp and Gradual Mountain Timberlines as a Result of Species Interactions, In: Hansen A.J., Di Castri F., (Eds.), Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows, Springer-Verlag, New York, 1992

    Google Scholar 

  26. [26]

    Camarero J.J., Gutiérrez E., Fortin M.-J., Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries, Global Ecol. Biogeogr., 2006, 15, 182–191

    Article  Google Scholar 

  27. [27]

    Hufkens K., Scheunders P., Ceulemans R., Ecotones in vegetation ecology: methodologies and definitions revisited, Ecol. Res., 2009, 24, 977–986

    Article  Google Scholar 

  28. [28]

    Harris L.D., Edge effects and conservation of biotic diversity, Conserv. Biol., 1988, 2, 330–332

    Article  Google Scholar 

  29. [29]

    Forman R.T.T., Land mosaics: the ecology of landscapes and regions, Cambridge University Press, Cambridge, 1995

    Google Scholar 

  30. [30]

    Lovász Gy., A Baranyai-dombság, a Mecsek és a Villányi-hegység (Baranya Hills, Mecsek Mountains and Villány Mountains), In: Ádám L., Marosi S., Szilárd J., (Eds.), A Dunántúli-dombság (Dél-Dunántúl) (Transdanubian Hills (South Transdanubia)), Akadémiai Kiadó, Budapest, 1981, (in Hungarian)

    Google Scholar 

  31. [31]

    Szilárd J., Éghajlati adottságok (Climatic conditions), In: Ádám L., Marosi S., Szilárd J., (Eds.), A Dunántúli-dombság (Dél-Dunántúl) (Transdanubian Hills (South Transdanubia)), Akadémiai Kiadó, Budapest, 1981, (in Hungarian)

    Google Scholar 

  32. [32]

    Ambrózy P., Kozma F., Éghajlat (Climate), In: Marosi S., Somogyi S., (Eds.), Magyarország kistájainak katasztere II (Cadaster of the basic landscape units of Hungary II), MTA Földrajztudományi Kutató Intézet, Budapest, 1990, (in Hungarian)

    Google Scholar 

  33. [33]

    Horvát A.O., Papp L., A nagyharsányi Szársomlyón végzett mikroklímamérések eredményei (Results of the microclimate measurements made on Szársomlyó Mountain near Nagyharsány), Janus Pannonius Múz. Évk., 1964, 9, 43–51, (in Hungarian)

    Google Scholar 

  34. [34]

    Dénes A., A Mecsek és a Villányi-hegység karsztbokorerdői (Karst shrubforests of the Mecsek Mountains and of the Villány Mountains), Janus Pannonius Múz. Évk., 1995, 39, 5–31, (in Hungarian)

    Google Scholar 

  35. [35]

    Simon T., Entdeckung und Zönologie der Festuca dalmatica (Hack.) Richt. in Ungarn und ihr statistischer Vergleich mit ssp. pseudodalmatica (Kraj.) Soó (Discovery and coenology of Festuca dalmatica (Hack.) Richt. in Hungary and its statistical comparison with ssp. pseudodalmatica (Kraj.) Soó, Ann. Univ. Budapest, S. Biol., 1964, 7, 143–156, (in German)

    Google Scholar 

  36. [36]

    Dénes A., A Villányi-hegység Chrysopogono-Festucion dalmaticae társulásai (Chrysopogono-Festucion dalmaticae associations of the Villány Mountains), In: Csontos P., (Ed.), Sziklagyepek szünbotanikai kutatása (Ecological studies on rock swards), Scientia Kiadó, Budapest, 1998, (in Hungarian)

    Google Scholar 

  37. [37]

    Horvát A.O., A mecseki tájak erdei növénytársulásai (Forest associations of the Mecsek Mountains), Janus Pannonius Múz. Évk., 1963, 8, 33–53, (in Hungarian)

    Google Scholar 

  38. [38]

    Dénes A., A Villányi-hegység flóra- és vegetációkutatásának története, eredményeinek összefoglalása, különös tekintettel a védett és ritka fajok előfordulására (History of research on flora and vegetation in the Villány Mountains, a summary of results, with special regard to the occurence of rare and protected species), In: Uherkovich Á., (Ed.), A Villányi-hegység botanikai és zoológiai alapfelmérése (The flora, vegetation and fauna of the Villány Mountains), Baranya megyei Múzeumok Igazgatósága, Pécs, 2000, (in Hungarian)

    Google Scholar 

  39. [39]

    Szita L., Nagyharsány, Száz magyar falu könyvesháza Kht., Budapest, 2002, (in Hungarian)

  40. [40]

    Reuter C., Baranya megye: Szársomlyó (Baranya county: Szársomlyó Mountain), In: Kopasz M., (Ed.), Védett természeti értékeink (Protected natural values in Hungary), Mezőgazdasági Kiadó, Budapest, 1976, (in Hungarian)

    Google Scholar 

  41. [41]

    Jakucs P., Dynamische Verbindung der Wälder und Rasen (Dynamic connections of forests and grasslands), Akadémiai Kiadó, Budapest, 1972, (in German)

    Google Scholar 

  42. [42]

    Borhidi A., Magyarország növénytársulásai (Plant associations of Hungary), Akadémiai kiadó, Budapest, 2003, (in Hungarian)

    Google Scholar 

  43. [43]

    Ludwig J.A., Cornelius J.M., Locating discontinuities along ecological gradients, Ecology, 1987, 68, 448–450

    Article  Google Scholar 

  44. [44]

    Körmöczi L., On the sensitivity and significance test of biotic boundary detection, Community Ecol., 2005, 6, 75–81

    Article  Google Scholar 

  45. [45]

    Palmer M.W., van der Maarel E., Variance in species richness, species association, and niche limitation, Oikos, 1995, 73, 203–213

    Article  Google Scholar 

  46. [46]

    Horváth A., INFOTHEM program: new possibilities of spatial series analysis based on information theory methods, Tiscia, 1998, 31, 71–84

    Google Scholar 

  47. [47]

    Bartha S., Kertész M., The importance of neutral-models in detecting interspecific spatial associations from ‚trainsect’ data, Tiscia, 1998, 31, 85–98

    Google Scholar 

  48. [48]

    Horváth A., Makrai L., Variability of spatial dependence within a pioneer plant community, Tiscia, 2000, 32, 19–29

    Google Scholar 

  49. [49]

    Zalatnai M., Körmöczi L., Tóth T., Community boundaries and edaphic factors in saline-sodic grassland communities along an elevation gradient, Tiscia, 2007, 36, 7–15

    Google Scholar 

  50. [50]

    Crawley, M.J., The R Book, John Wiley, New York, 2007

    Book  Google Scholar 

  51. [51]

    Hothorn T., Bretz F., Westfall P., Simultaneous Inference in General Parametric Models, Biometrical J., 2008, 50, 346–363

    Article  Google Scholar 

  52. [52]

    Tichý L., JUICE, software for vegetation classification, J. Veg. Sci., 2002, 13, 451–453

    Article  Google Scholar 

  53. [53]

    Tichý L., Chytrý M., Statistical determination of diagnostic species for site groups of unequal size, J. Veg. Sci. 2006, 17, 809–818

    Google Scholar 

  54. [54]

    Hammer Ř., Harper D.A.T., Ryan P.D., PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 2001,

  55. [55]

    Brothers T.S., Spingarn A., Forest fragmentation and alien plant invasion of Central Indiana old-growth forests, Conserv. Biol., 1992, 6, 91–100

    Article  Google Scholar 

  56. [56]

    Oosterhoorn M., Kappelle M., Vegetation structure and composition along an interior-edge-exterior gradient in a Costa Rican montane cloud forest, Forest Ecol. Manag., 2000, 126, 291–307

    Article  Google Scholar 

  57. [57]

    Dutoit T., Buisson E., Gerbaud E., Roche P., Tatoni T., The status of transitions between cultivated fields and their boundaries: ecotones, ecoclines or edge effects?, Acta Oecol., 2007, 31, 127–136

    Article  Google Scholar 

  58. [58]

    Oliveira M.A., Grillo A.S., Tabarelli M., Forest edges in the Brazilian Atlantic forest: drastic changes in tree species assemblages, Oryx, 2004, 38, 389–394

    Article  Google Scholar 

  59. [59]

    Günter S., Weber M., Erreis R., Aguirre N., Influence of distance to forest edges on natural regeneration of abandoned pastures: a case study in the tropical mountain rain forest of Southern Ecuador, Eur. J. Forest Res., 2007, 126, 67–75

    Article  Google Scholar 

  60. [60]

    De Casenave J.L, Pelotto J.P., Protomastro J., Edge-interior differences in vegetation structure and composition in a Chaco semi-arid forest, Argentina, Forest Ecol. Manag., 1995, 72, 61–69

    Article  Google Scholar 

  61. [61]

    Gonzalez M., Ladet S., Deconchat M., Cabanettes A., Alard D., Balent G., Relative contribution of edge and interior zones to patch size effect on species richness: An example for woody plants, Forest Ecol. Manag., 2010, 259, 266–274

    Article  Google Scholar 

  62. [62]

    Baez S., Balslev H., Edge effects on palm diversity in rain forest fragments in western Ecuador, Biodivers. Conserv., 2007, 16, 2201–2211

    Article  Google Scholar 

  63. [63]

    Łuczaj Ł., Sadowska B., Edge effects of different groups of organisms: vascular plants, bryophyte and fungi species richness across a forest-grassland border, Folia Geobot. Phytotax., 1997, 32, 343–353

    Google Scholar 

  64. [64]

    Walker S., Wilson J.B., Steel J.B., Rapson G.L., Smith B., King W. McG., et al., Properties of ecotones: Evidence from five ecotones objectively determined from a coastal vegetation gradient, J. Veg. Sci., 2003, 14, 579–590

    Article  Google Scholar 

  65. [65]

    Tilman D., Pacala S., The Maintenance of Species Richness in Plant Communities, In: Ricklefs R.E., Schluter D., (Eds.), Species Diversity in Ecological Communities, University of Chicago Press, Chicago, 1993

    Google Scholar 

  66. [66]

    Mészáros I., Jakucs P., Précsényi P., Diversity and niche changes of shrub species within forest margin, Acta Bot. Hung., 1981, 27, 421–437

    Google Scholar 

  67. [67]

    Auclair A.N., Goff F.G., Diversity relations of upland forests in the western Great Lakes area, Am. Nat., 1971, 105, 499–528

    Article  Google Scholar 

  68. [68]

    Dierschke H., Saumgesellschaften im Vegetations- und Standortsgefälle an Waldrändern (Edge communities at vegetation and habitat gradients in forest edges), Script. Geobot., 1974, 6, 1–246, (in German)

    Google Scholar 

  69. [69]

    Papp M., A csáfordjánosfai tölgy-kőris-szil ligeterdő szegélyének fa- és cserjefaj összetétele, valamint szerkezeti jellemzői (Tree and shrub composition and structural characteristics of the edge of an oak-elm-ash woodland near Csáfordjánosfa), Kitaibelia, 2008, 13, 185, (in Hungarian)

    Google Scholar 

  70. [70]

    Burton J.P., Effects of clearcut edges on trees in the Sub-boreal spruce zone of Northwest-Central British Columbia, Silva Fenn., 2002, 36, 329–352

    Google Scholar 

  71. [71]

    Fraver S., Vegetation responses along edge-tointerior gradients in the mixed hardwood forests of the Roanoke River Basin, North Carolina, Conserv. Biol., 1994, 8, 822–832

    Article  Google Scholar 

  72. [72]

    Kivistö L., Kuusinen M., Edge effects on the epiphytic lichen flora of Picea abies in middle boreal Finland, Lychenologist, 2000, 32, 387–398

    Article  Google Scholar 

  73. [73]

    Hylander K., Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests, J. Appl. Ecol., 2005, 42, 518–525

    Article  Google Scholar 

  74. [74]

    Nascimento H.E.M., Andrade A.C.S., Camargo J.L.C., Laurance W.F., Laurance S.G., Ribeiro J.E.L., Effects of the surrounding matrix on tree recruitment in Amazonian Forest Fragments, Conserv. Biol., 2006, 20, 853–860

    PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to László Erdős.

About this article

Cite this article

Erdős, L., Gallé, R., Bátori, Z. et al. Properties of shrubforest edges: a case study from South Hungary. cent.eur.j.biol. 6, 639 (2011).

Download citation


  • Natural edge
  • Edge effects
  • Edge diversity
  • Species richness
  • Edge-related species
  • Orientation
  • Matrix
  • Transect
  • Moving split-window
  • Villány Mts