Skip to main content
Log in

Combined action of X-rays and nonylphenol on mouse sperm

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The aim of this study was to assess the effects of 2-weeks’ X-ray and/or nonylphenol (NP) exposure on male mice’s sperm count and quality. Pzh:SFIS mice were exposed to X-rays (0.05 Gy, 0.10 Gy, 0.20 Gy) or to nonylphenol (25 mg/kg bw, 50 mg/kg bw, 100 mg/kg bw) or to both agents (0.05 Gy + 25 mg/kg bw NP, 0.10 Gy + 50 mg/kg bw NP). At 24 h and 5 weeks after the end of exposure the sperm count, morphology and frequency of DNA damage in the male germ cells were estimated. Each agent alone diminished sperm count and morphology. The dose of 0.05 Gy of X-rays decreased the frequency of DNA damage. Combined exposure to lower doses of both agents significantly improved sperm morphology and decreased the level of DNA damage compared to one agent alone. Combined exposure to higher doses reduced the frequency of DNA damage compared to the effect of the appropriate dose of NP. Results of combined exposure to low doses of both agents suggest that 0.05 Gy of X-rays stimulate the DNA damagecontrol system and in consequence repair of DNA caused by X-rays and NP. It may be correlated with increased antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonde J.P., Giwercman A., Occupational hazards to male fecundity, Reprod. Med. Rev., 1995, 4, 59–73

    Article  Google Scholar 

  2. Carlsen E., Giwercman A., Keiding N., Skakkebaek N.E., Evidence for decreasing quality of semen during the past 50 years, Br. Med. J., 1992, 305, 609–612

    Article  CAS  Google Scholar 

  3. Toppari J., Larsen J.C., Christiansen P., Giwercman A., Grandjean P., Guilette L.J. Jr., et al., Male reproductive health and environmental xenoestrogens, Environ. Health Perspect., 1996, 104, 741–803

    Article  PubMed  CAS  Google Scholar 

  4. Aitken R.J., Koopman P., Lewis S.E., Seeds of concern, Nature, 2004, 432, 48–52

    Article  PubMed  CAS  Google Scholar 

  5. Sharpe R.M., Toxicity of spermatogenesis and its detection, In: Korack K.S., (Ed.), Reproductive and developmental toxicology, Marcel Dekker, New York, 1998

    Google Scholar 

  6. Chitra K.C., Latchoumycandane C., Mathur P.P., Effect of nonylphenol on the antioxidant system in epididymal sperm of rats, Arch. Toxicol., 2002, 76, 545–551

    Article  PubMed  CAS  Google Scholar 

  7. Kimura N., Kimura T., Suzuki M., Totsukawa K., Effect of gestational exposure to nonylphenol on the development and fertility of mouse offspring, J. Reprod. Dev., 2006, 52, 789–795

    Article  PubMed  CAS  Google Scholar 

  8. Hale R.C., Smith C.L., de Fur P.O., Harvey E., Bush E.O., La Gaurdia L.J., et al., Nonylphenols in sediments and effluents associated with diverse wastewater outfalls, Environ. Sci. Technol., 2000, 19, 946–952

    CAS  Google Scholar 

  9. Lee P.C., Distribution of male reproductive tract development by administration of the xenoestrogen, nonylphenol to male newborn rats, Endocrine, 1998, 9, 105–111

    Article  PubMed  CAS  Google Scholar 

  10. Weber L.P., Kiparissis Y., Hwang G.S., Niimi A.J., Jantz D.M., Increased cellular apoptosis after chronic aqueous exposure to nonylphenol and quercetin in adult medaka (Oryzias latipes), Comp. Biochem. Physiol., 2002, 131, 51–59

    Google Scholar 

  11. Cardinalli M., Maradonna F, Olivotto I., Bartoluzzi G., Mosconi G., Polzonetti-Magni A.M., et al., Temporary impairment of reproduction in freshwater teleost exposed to nonylphenol, Reprod. Toxicol., 2004, 18, 597–604

    Google Scholar 

  12. Giger W., Brunner P.H., Schaffner C., 4-nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfacants, Science, 1984, 225, 623–625

    Article  PubMed  CAS  Google Scholar 

  13. Ahel M., McEvoy J., Giger W., Bioaccumulation of the lipophilic metabolites of nonionic surfacants in freshwater organisms, Environ. Pollut., 1993, 79, 243–248

    Article  PubMed  CAS  Google Scholar 

  14. Lee P.C., Disruption of male reproductive tract development by administration of the xenoestrogen, nonylphenol, to male newborn rats, Endocrine, 1998, 9, 105–111

    Article  PubMed  CAS  Google Scholar 

  15. De Jager C., Bornman M.S., Wandrag S., van der Horst D., Effect of p-nonylphenol, an environmental toxicant with oestrogenic properties, on fertility potential in adult male rats, Andrologia, 1999, 31, 99–106

    Article  PubMed  Google Scholar 

  16. Committee on the Biological Effects on Ionizing Radiations, Board on Radiation Effects, Research Commission on Life Sciences, National Research Council, Biological Effects on Ionizing Radiation (BEIR), Health effects of exposure to low levels of ionizing radiation, National Academy Press, Washington, 1990

    Google Scholar 

  17. Collins B., Howard D., Allen J., Kinetochorestaining of spermatid micronulei: studies of mice treated with X-radiation or acrylamide, Mutat. Res., 1992, 281, 287–294

    Article  PubMed  CAS  Google Scholar 

  18. Dobrzyńska M.M., Gajewski A.K., Induction of micronuclei in bone marrow and sperm head abnormalities after combined exposure of mice to low doses of X-rays and acrylamide, Teratogen. Carcinogen. Mutagen., 2000, 20, 133–140

    Article  Google Scholar 

  19. Rowley M.J., Leach D.R., Warner G.A., Heller C.G., Effect of graded doses of ionizing radiation on human testis, Radiat. Res., 1974, 58, 665–678

    Article  Google Scholar 

  20. Bonde J.P., Giwercman A., Occupational hazards to male fecundity, Reprod. Med. Rev., 1995, 4, 59–73

    Article  Google Scholar 

  21. Dobrzyńska M.M., The changes in the quantity and quality of semen following subchronic exposure of mice to irradiation, In: Cebulska-Wasilewska A., Au W.W., Sram R.J., (Eds.), Human Monitoring for Genetic Effects, IOS Press, Amsterdam, 2003

    Google Scholar 

  22. Searle A.G., Beechey C.V., Sperm count, eggfertilization and dominant lethality after X-irradiation of mice, Mutat. Res., 1974, 22, 69–74

    Google Scholar 

  23. Singh N.P., Mc Coy M., Tice R.R., Schneider E.L., A simple technique for quantization of low level of DNA damage in individual cells, Exp. Cell Res., 1988, 175, 184–191

    Article  PubMed  CAS  Google Scholar 

  24. Anderson D., Yu T.W., Phillips B.J., Schmezer P., The effects of various antioxidants and other modifying agents on oxygen-radical-generated damage in human lymphocytes in Comet assay, Mutat. Res., 1994, 307, 261–271

    PubMed  CAS  Google Scholar 

  25. Kumaravel T.S., Jha A.N., Reliable comet assay measurements for detecting DNA damage induced by ionizing radiation and chemicals, Mutat. Res., 2006, 605, 7–16

    PubMed  CAS  Google Scholar 

  26. Wyrobek A.J., Bruce W.R. Chemical induction of sperm abnormalities in mice, Proc. Natl. Acad. Sci. USA, 1975, 72, 4425–4429

    Article  PubMed  CAS  Google Scholar 

  27. Destinger H., Jung H., Molecular Biology, Springer, Heidelberg, 1970

    Google Scholar 

  28. Sharpe R.M., Irvine D.S., How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health?, Br. Med. J., 2004, 328, 447–451

    Article  CAS  Google Scholar 

  29. Oberley L.W., Lindgren L.A., Baker S.A., Stevens R.H., Superoxide ion as the cause of the oxygen effect, Radiat. Res., 1976, 68, 320–328

    Article  PubMed  CAS  Google Scholar 

  30. Biaglow J.E., Mitchell J.B., Heid K., The importance of peroxide and superoxide in the X-rays response, Int. J. Radiat. Oncol. Biol. Phys., 1992, 22, 665–669

    Article  PubMed  CAS  Google Scholar 

  31. Malekirad A.A., Ranjbar A., Rahzani K., Pilehvarian A.A., Rezaie A., Zamani M.J., et al., Oxidative stress in radiology staff, Environ. Toxicol. Pharmacol., 2005, 20, 215–218

    Article  CAS  Google Scholar 

  32. Tobin D.J., Swanson N.N., Pittelkow M.R., Peters E.M., Schallreuter K.V., Melanocytes are not absent in lesional skin of long duration vitiligo, J. Pathol., 2000, 191, 407–416

    Article  PubMed  CAS  Google Scholar 

  33. Anderson D., Cemeli E., Schmidt T.E., Baumgartner A., Brinkworth M.H., Wood J.M., Oestrogenic compounds and oxidative stress, In: Anderson D., Brinkworth M.H., (Eds.), Male mediated Developmental Toxicity, RSC Publishing, Cambridge, 2007

    Chapter  Google Scholar 

  34. Ochsendorf F.R., Buhl R., Bastlein A., Beschmann H., Glutathione in spermatozoa and seminal plasma of infertile men, Hum. Reprod., 1998, 13, 353–359

    Article  PubMed  CAS  Google Scholar 

  35. Gong Y., Han X.D., Nonylphenol-induced oxidative stress and cytotoxicity in testicular Sertoli cells, Reprod. Toxiciol., 2006, 22, 623–630

    Article  CAS  Google Scholar 

  36. Chitra K.C., Latchoumycandane C., Mathur P.P., Effect of nonylphenol on the antioxidant system in epididymal sperm of rats, Arch. Toxicol., 2002, 76, 545–551

    Article  PubMed  CAS  Google Scholar 

  37. De Jager C., Bornman M.S., van der Horst G., The effect of p-nonylphenol, an environmental toxicant with oestrogenic properties, on fertility potential in adult male rats, Andrologia, 1999, 31, 99–106

    Article  PubMed  Google Scholar 

  38. Lee P.C., Arnolt P., Nickels K.C., Testicular abnormalities in male rats after lactational exposure to nonylphenol, Endocrine, 1999, 11, 61–68

    Article  PubMed  CAS  Google Scholar 

  39. Zhang H., Zeng Y., Cheng W., Wu D., Adverse effects of nonylphenol on the reproductive function of adult male SD rats, Sichuan Da Xue Xue Bao Yi Xue Ban, 2003, 34, 292–297, (in Chinese, with English abstract)

    PubMed  Google Scholar 

  40. Nagao T., Saito Y., Usumii K., Nakagomi M., Yoshimura S., Ono H., Disruption of the reproductive system and reproductive performance by administration of nonylphenol to newborn rats, Hum. Exp. Toxicol., 2000, 19, 284–296

    Article  PubMed  CAS  Google Scholar 

  41. Nagao T., Wada K., Marumo H., Yoshimura S., Ono H., Reproductive effects of nonylphenol in rats after gavage administration: A two generation study, Reprod. Toxicol., 2001, 15, 293–315

    Article  PubMed  CAS  Google Scholar 

  42. Tyl R.W., Myers C.B, Marr M.C., Castilo N.P., Seely J.C., Sloan C.S., et al., Three-generation evaluation of dietary para-nonylphenol in CD (Sprague-Dawley) rats, Toxicol. Sci., 2006, 92, 295–310

    Article  PubMed  CAS  Google Scholar 

  43. Liu G., Gong P., Zhao H., Wang Z., Gong S., Cai L., Effect of low-level radiation on the death of male germ cells, Radiat. Res, 2006, 165, 379–389

    Article  PubMed  CAS  Google Scholar 

  44. Hasegawa G., Wilson L.D., Russell L.D., Meistrich M.L., Radiation-induced cell death in the mouse testis: Relationship to apoptosis, Radiat. Res., 1997, 147, 457–467

    Article  PubMed  CAS  Google Scholar 

  45. Hasegawa G., Zhang Y., Niibe H., Tery N.H., Meistrich M.L., Resistance of diferentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice, Radiat. Res., 1998, 149, 263–270

    Article  PubMed  CAS  Google Scholar 

  46. Yin Y., Stahl B.C., DeWolf W.C., Morgentaler A., P53 mediated germ cell quality control in spermatogenesis, Dev. Biol., 1998, 204, 165–171

    Article  PubMed  CAS  Google Scholar 

  47. Kangasniemi M., Veromas T., Kulmala J., Kaipia A., Parvinen M., Toppari J., DNA-flow cutometry of defined stages of rat semiferous epithelium:effects of 3 Gy of high-energy X-irradiation, J. Androl., 1990, 11, 312–317

    PubMed  CAS  Google Scholar 

  48. Otala M., Suomalainen L., Pentikainen M.O., Kovanen P., Tenhunen M., Erkkila K., et al., Protection from radiation-induced male germ cell loss by sphingosine-1-phosphate, Biol. Reprod., 2004, 70, 759–767

    Article  PubMed  CAS  Google Scholar 

  49. Beumer T.L., Roepers-Gajadien H.L., Gaderman I.S., Rutgers D.H., Rooi D.G., P2(Cp1/WAF1) expression in the mouse testis before and after X-irradiation, Mol. Reprod. Dev., 1997, 47, 240–247

    Article  PubMed  CAS  Google Scholar 

  50. Beumer T.L., Roepers-Gajadien H.L., Gaderman I.S., vav Buul P.P.W., Gil-Gomez G., Rutgers D.H., et al., The role of the tumor suppressor p53 in spermatogenesis, Cell Death Differ., 1998, 5, 669–677

    Article  PubMed  CAS  Google Scholar 

  51. Haines G.A., Hendry J.H., Daniel C.P., Morris I.D., Increased levels of comet-detected spermatozoa DNA damage following in vivo isotopic- or X-raysirradiation of spermatogonia, Mutat. Res., 2001, 495, 21–32

    PubMed  CAS  Google Scholar 

  52. Haines G.A., Hendry J.H., Daniel C.P., Morris I.D., Germ cell and dose-dependent DNA damage measured by comet assay in murine spermatozoa after testicular X-irradiation, Biol. Reprod., 2002, 67, 854–861

    Article  PubMed  CAS  Google Scholar 

  53. Pollycove M., Nonlinearity of radiation health effects, Environ. Health Perspect., 1998, 106, 363–369

    Article  PubMed  Google Scholar 

  54. Pollycove M., Feinendegen L.E., Radiation reduced versus endogenous DNA damage possible effect of inducible protective responses in mitigating endogenous damage, Hum. Exp. Toxicol., 2003, 22, 290–306

    Article  PubMed  CAS  Google Scholar 

  55. Masaki H., Atsumi T., Sakurai H., Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation, Biochem. Biophys. Res. Commun., 1995, 206, 474–479

    Article  PubMed  CAS  Google Scholar 

  56. Goto R., Kubota T., Ibuki Y., Kaji K., Goto A., Degradation of nonylphenol polyethoxylates by ultraviolet B irradiation and effects of their products on mammalian cultured cells, Toxicology, 2004, 202, 237–247

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata M. Dobrzyńska.

About this article

Cite this article

Dobrzyńska, M.M. Combined action of X-rays and nonylphenol on mouse sperm. cent.eur.j.biol. 6, 320–329 (2011). https://doi.org/10.2478/s11535-011-0021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-011-0021-0

Keywords

Navigation