Skip to main content
Log in

Drought tolerance in cereals in terms of water retention, photosynthesis and antioxidant enzyme activities

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Experiments were carried out on three bread wheat varieties, one barley and one durum wheat variety grown in pots in the phytotron and subjected to water withdrawal for 7 days during grain-filling. Leaf water loss, net assimilation rate and transpiration showed marked differences, allowing the genotypes to be ranked. Although the most resistant variety had the highest activity for ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and glutathione-S-transferase (GST), which did not rise further in response to drought and the most susceptible variety had the lowest values, which increased to the greatest extent under drought, the level of sensitivity could not be predicted for all the genotypes from the enzyme activity values alone. The largest increases were recorded for the APX, CAT and GR activities. In most genotypes the GR activity was correlated with that of GST, CAT and APX. Changes in the enzyme activities were observed after a decline in transpiration and photosynthesis. The range of soil moisture values over which the antioxidant enzyme activity levels remained relatively unchanged was a better indication of tolerance to drought than either basic or stress-induced activity levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaves H.M., Pereira J.S., Maroco J., Rodrigues M.L., Ricardo C.P.P., Osório M.L., et al., How plants cope with water stress in the field. Photosynthesis and growth, Ann. Bot., 2002, 89, 907–916

    Article  PubMed  CAS  Google Scholar 

  2. Kameli A., Lösel D.M., Carbohydrates and water status in wheat plants under water stress, New Phytol., 1993, 125, 609–614

    Article  CAS  Google Scholar 

  3. Sarker A.M., Rahman M.S., Paul N.K., Effect of soil moisture on relative leaf water content, chlorophyll, proline and sugar accumulation in wheat, J. Agron. Crop. Sci., 1999, 183, 225–229

    Article  CAS  Google Scholar 

  4. Niedzwieds-Siegien I., Bogatek-Leszczynska R., Côme D., Corbineau F., Effects of drying rate on dehydration sensitivity of excised wheat seedlings shoots as related to sucrose metabolism and antioxidant enzyme activities, Plant Sci., 2004, 167, 879–888

    Article  Google Scholar 

  5. Tuba Z., Csintalan Z., Péli E.R., Plant physiological basis for environmental protection and management (Környezetvédelmi és környezetgazdálkodási növényélettani alapok), SZIE MKK Növénytani és Növényélettani Tanszék, Gödöllő, 2004, 30–33, (in Hungarian)

  6. Loggini B., Scartazza A., Brugnoli E., Navari-Izzo F., Antioxidant defense system, pigment composition and photosynthesis efficiency in two wheat cultivars subjected to drought, Plant Physiol., 1999, 119, 1091–1099

    Article  PubMed  CAS  Google Scholar 

  7. Baisak R., Rana D., Acharya P.B.B., Kar M., Alterations in the active oxygen scavenging enzymes of wheat leaves subjected to water stress, Plant Cell Physiol., 1994, 35, 489–495

    CAS  Google Scholar 

  8. Apel K., Hirt H., Reactive oxygen species: metabolism, oxidative stress and signal transduction, Ann. Rev. Plant Biol., 2004, 55, 373–399

    Article  CAS  Google Scholar 

  9. Pogány M., Harrach B.D., Hafez Y.M., Barna B., Király Z., Páldi E., Role of reactive oxygen species in abiotic and biotic stresses in plants, Acta Phytopathol. Entomol. Hung., 2006, 41, 23–35

    Article  Google Scholar 

  10. Farrant J.M., Bailly C., Leymarie J., Hamman B., Come D., Corbineau F., Wheat seedlings as a model to understand the desiccation tolerance and sensitivity, Physiol. Plant., 2004, 120, 563–574

    Article  PubMed  CAS  Google Scholar 

  11. Selote D., Khanna-Chopra R., Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings, Physiol. Plant., 2006, 127, 494–504

    Article  CAS  Google Scholar 

  12. Zhang J.X., Kirkham M.B., Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species, Plant Cell Physiol., 1984, 35, 785–791

    Google Scholar 

  13. Sairam R.K., Saxena D.C., Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance, J. Agron. Crop Sci., 2000, 184,1, 55–61

    Article  CAS  Google Scholar 

  14. Keles Y., Öncel I., Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings, Plant Sci., 2002, 163, 783–790

    Article  CAS  Google Scholar 

  15. Takele A., Farrant J., Enzymatic antioxidant defence mechanisms of maize and sorghum after exposure to and recovery from pre- and post-flowering dehydration, Acta Agron. Hung., 2009, 57, 445–459

    Article  CAS  Google Scholar 

  16. Almeselmani M., Deshmukh P.S., Sairam R.K., High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes, Acta Agron. Hung., 2009, 57, 1–14

    Article  CAS  Google Scholar 

  17. Sairam R.K., Srivastava G.C., Water stress tolerance of wheat (Triticum aestivum L.) variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes, J. Agron. Crop Sci., 2001, 186, 63–70

    Article  CAS  Google Scholar 

  18. Lascano H.R., Antonicelli G.E., Luna C.M., Melchiorre M.N., Gomez L.D., Racca R.W., et al., Antioxidant system response of different wheat cultivars under drought: field and in vitro studies, Aust. J. Plant Physiol., 2001, 28, 1095–1102

    CAS  Google Scholar 

  19. Tischner T., Kőszegi B., Veisz O., Climatic programmes used in the Martonvásár Phytotron most frequently in recent years, Acta Agron. Hung., 1997, 45, 85–104

    Google Scholar 

  20. Tottman D.R., Makepeace R.J., An explanation of the decimal code for the growth stages of cereals, with illustrations, Ann. Appl. Biol., 1979, 93, 221–234

    Article  Google Scholar 

  21. Janda T., Cséplő M., Németh C., Vida G., Pogány M., Szalai G., et al., Combined effect of water stress and infection with the necrotrophic fungal pathogen Drechslera tritici-repentis on growth and antioxidant activity in wheat, Cereal Res. Commun., 2008, 36, 53–64

    Article  CAS  Google Scholar 

  22. Smith I.K., Vierheller T.L., Thorne C.A., Assay of glutathione reductase in crude tissue homogenates using 5,5-dithiobis (2-nitrobenzoic acid), Anal. Biochem., 1988, 175, 408–413

    Article  PubMed  CAS  Google Scholar 

  23. Ádám A., Bestwick C.S., Barna B., Mansfield J.W. Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolica, Planta, 1995, 197, 240–249

    Article  Google Scholar 

  24. Nakano Y., Asada Y., Purification of ascorbate peroxidase from spinach chloroplasts: its activation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical, Plant Cell Physiol., 1987, 28, 131–140

    CAS  Google Scholar 

  25. Sabeva S., Nedeva D., Antioxidant enzymes in germinating wheat seeds as affected by dehydration stress, ABA and hydrogen peroxide, Acta Agron. Hung., 2008, 56,2, 113–127

    Article  CAS  Google Scholar 

  26. Khanna-Chopra R., Selote D., Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions, Environ. Exp. Bot., 2007, 60, 276–283

    Article  CAS  Google Scholar 

  27. Foyer C.H., Noctor G., Redox homeostasis and antioxidant signalling. A metabolic interface between stress perception and physiological responses, Plant Cell, 2007, 17, 1866–1875

    Article  Google Scholar 

  28. Noctor G., Veljovic-Jovabnic S., Foyer C.H., Peroxide processing in photosynthesis: antioxidant coupling and redox signalling, Phil. Trans. R. Soc. Lond. B, 2000, 355, 1465–1475

    Article  CAS  Google Scholar 

  29. Balla K., Bencze S., Janda T., Veisz O., Analysis of heat stress tolerance in winter wheat, Acta Agron. Hung., 2009, 57, 437–444

    Article  Google Scholar 

  30. Bartling D., Radzio R, Steiner U., Weiler E.W., A glutathione-S-transferase with glutathione peroxidase activity from Arabidopsis thaliana. Molecular cloning and functional characterization, Eur. J. Biochem., 1993, 216, 579–586

    Article  PubMed  CAS  Google Scholar 

  31. Kocheva K.V., Kartseva T., Landjeva S., Georgiev G.I., Physiological response of wheat seedlings to mild and severe osmotic stress, Cereal Res. Commun., 2009, 37, 199–208

    Article  CAS  Google Scholar 

  32. Veisz O., Bencze S., Balla K., Vida G., Bedő Z., Change in water stress resistance of cereals due to atmospheric CO2 enrichment, Cereal Res. Commun., 2008, 36, 1095–1098

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilvia Bencze.

About this article

Cite this article

Bencze, S., Bamberger, Z., Janda, T. et al. Drought tolerance in cereals in terms of water retention, photosynthesis and antioxidant enzyme activities. cent.eur.j.biol. 6, 376–387 (2011). https://doi.org/10.2478/s11535-011-0004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-011-0004-1

Keywords

Navigation