Comparative analysis of algal biodiversity in the rivers of Israel


Comparative analysis of algal communities in the rivers of Israel was completed to highlight the influence of environmental variables on biodiversity. The study revealed that 671 species of algae and cyanobacteria belonging to nine taxonomic divisions were present during 2002–2009 in the Yarqon, Alexander, Hadera, Qishon, Oren, Lower and Upper Jordan, and Zin rivers. The species richness of each river was evaluated by taxonomic structural comparison, geobotanical, hierarchical cluster analysis, and the degree of relatedness for different levels of taxonomic resolution. The analysis revealed close similarity of the Upper Jordan and Oren rivers. The average taxonomic distinctness index showed that the Yarqon, Oren, Upper Jordan, and Qishon communities were partly degraded due to permanent environmental disturbances. The variation in taxonomic distinctness index showed that the Alexander, Yarqon and Hadera communities were formed not only due to anthropogenic factors but also through long-term climatic impact. The most abundant indicator species inhabit low streaming and standing alkaline waters of medium salinity and low to medium organic pollution. The statistical approaches allowed discrimination between climatic and anthropogenic factors that impact upon the riverine biodiversity in semi-arid environments. Analysis shows the influence of anthropogenic factors was strongly modulated by climatic impacts causing a marked decease of species richness from north to south.

This is a preview of subscription content, access via your institution.


  1. [1]

    Whittaker R.H., Evolution and measurement of species diversity, Taxon, 1972, 21, 213–251

    Article  Google Scholar 

  2. [2]

    Mazzoleni S., Bonanomi G., Giannino F., Rietkerk M., Dekker S.C., Zucconi F., Is plant biodiversity driven by decomposition processes? An emerging new theory on plant diversity, Comm. Ecol., 2007, 8, 103–109

    Article  Google Scholar 

  3. [3]

    Spitale D., Bertuzzi E., Cantonati M., How to investigate the ecology of springs habitats on the basis of experiences gained from a multidisciplinary project (CRENODAT), In: Cantonati M., Bertuzzi E., Spitale D., (Eds.), The spring habitat: biota and sampling methods, Museo Tridentino di Scienze Naturali, Trento, 2007

  4. [4]

    Higgins J.V., Bryer M.T., Khoury M.L., Fitzhugh T.W., A freshwater classification approach for biodiversity conservation planning, Conserv. Biol., 2005, 19, 432–445

    Article  Google Scholar 

  5. [5]

    Zacharias M.A., Roff J.C., A hierarchical ecological approach to conserving marine biodiversity, Conserv. Biol., 2000, 414, 1327–1334

    Article  Google Scholar 

  6. [6]

    Cantonati M., Gerecke R., Bertuzzi E., Springs of the Alps, sensitive ecosystems to environmental change: from biodiversity assessments to longterm studies, In: Lami A., Boggero A., (Eds.), Ecology of high altitude aquatic systems in the Alps, Hydrobiologia, 2006, 562, 59–96

  7. [7]

    Whitton B.A., Roth E., Friedrich G., (Eds), Use of algae for monitoring rivers, Institut für Botanik, Universität Innsbruck Press, Innsbruck, Austria, Innsbruck, 1991

    Google Scholar 

  8. [8]

    Prygiel J., Whitton B.A., Bukowska J., (Eds.), Use of algae for monitoring rivers III, Agence de l’Eau Artois-Picardie, Douai, 1998

    Google Scholar 

  9. [9]

    Rott E., Cantonati M., Füreder L., Pfister P., Benthic algae in high altitude streams of the Alps — a neglected component of the aquatic biota, Hydrobiologia, 2006, 562, 195–216

    Article  Google Scholar 

  10. [10]

    Emerson B.C., Gillespie R.G., Phylogenetic analysis of community assembly and structure over space and time, Trends Ecol. Evol., 2008, 23, 619–630

    Article  PubMed  Google Scholar 

  11. [11]

    Zohary M., Flora Palaestina, I: Equisetaceae to Moringacea, The Israel Academy of Sciences and Humanities, Jerusalem, 1966

    Google Scholar 

  12. [12]

    Zohary M., Feinbrun-Dothan N., Flora Palaestina, The Israel Academy of Sciences and Humanities, Jerusalem, 1966

    Google Scholar 

  13. [13]

    Nevo E., Biodiversity: The Evolution Canyon at Nahal Oren, Mt Carmel, Israel, Isr. J. Plant Sci., 1994, 42, 1–83

    Google Scholar 

  14. [14]

    Nevo E., Asian, African and European biota meet at “Evolution Canyon” Israel: Local tests of global biodiversity and genetic diversity patterns, Proc. R. Soc. Lond. B, 1995, 262, 149–155

    Article  Google Scholar 

  15. [15]

    Nevo E., Evolution in action across phylogeny caused by microclimatic stresses at “Evolution Canyon”, Theor. Popul. Biol., 1997, 52, 231–243

    CAS  Article  PubMed  Google Scholar 

  16. [16]

    Nevo E., Evolution of genome-phenome diversity under environmental stress, Proc. Natl. Acad. Sci. USA, 2001, 98, 6233–6240

    CAS  Article  PubMed  Google Scholar 

  17. [17]

    Barinova S.S., Medvedeva L., Nevo E., Regional influences on algal biodiversity in two polluted rivers of Eurasia (Rudnaya River, Russia, and Qishon River, Israel) by bio-indication and Canonical Correspondence Analysis (CCA), Appl. Ecol. Environ. Res., 2008, 6, 29–55

    Google Scholar 

  18. [18]

    Barinova S.S., Yehuda G., Nevo E., Comparative analysis of algal communities in the rivers of northern and southern Israel as bearing on ecological consequences for climate change, J. Arid. Environ., 2010, 74, 765–776

    Article  Google Scholar 

  19. [19]

    Richards C.L., Carstens B.C., Knowles L.L., Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses, J. Biogeogr., 2007, 34, 1833–1845

    Article  Google Scholar 

  20. [20]

    Barinova S.S., Anissimova O.V., Nevo E., Jarygin M.M., Wasser S.P., Diversity and Ecology of Algae from Nahal Qishon, Northern Israel, Plant Biosyst., 2004, 138, 245–259

    Google Scholar 

  21. [21]

    Barinova S.S., Anissimova O.V., Nevo E., Wasser S. Diversity and ecology of phytoplankton and periphyton of the Nahal Oren, Alon Natural Park, Northern Israel, Algol. Stud., 2005, 116, 169–197

    Google Scholar 

  22. [22]

    Barinova S.S., Medvedeva L.A., Anissimova O.V., Diversity of algal indicators in environmental assessment, Pilies Studio, Tel Aviv, 2006, (in Russian)

    Google Scholar 

  23. [23]

    Barinova S.S., Tavassi M., Nevo E., Algal indicator system of environmental variables in the Hadera River basin, central Israel, Plant Biosyst., 2006, 140, 65–79

    Article  Google Scholar 

  24. [24]

    Barinova S.S., Tavassi, M., Nevo E., Diversity and ecology of algae from Alexander River (Central Israel), Flora Mediterranea, 2006, 16, 111–132

    Google Scholar 

  25. [25]

    Tavassi M., Barinova S.S., Anissimova O.V., Nevo E., Wasser S.P., Algal indicators of environment in the Nahal (River) Yarqon basin, central Israel, Int. J. Algae, 2004, 6, 355–382

    Article  Google Scholar 

  26. [26]

    Tavassi M., Barinova S., Glassman H., Algal community in the pollution Lower Jordan River (Israel), Isr. J. Plant Sci., 2008, 56, 111–119

    Article  Google Scholar 

  27. [27]

    Cabeza M., Arponen A., Jäättelä L., Kujala H., van Teeffelen A., Hanski I., Conservation planning with insects at three different spatial scales, Ecography, 2010, 33, 54–63

    Article  Google Scholar 

  28. [28]

    Bar-Or Y., Restoration of the rivers in Israel’s coastal plain, Water Air Soil Pollut., 2000, 123, 311–321

    CAS  Article  Google Scholar 

  29. [29]

    Nevo E., Wasser S.P., (Eds.), Biodiversity of cyanoprocaryotes, algae and fungi of Israel. Cyanoprocaryotes and algae of continental Israel, Gantner, Ruggell, Leichtenstein, 2000

    Google Scholar 

  30. [30]

    Guiry M.D., Guiry G.M., AlgaeBase, Worldwide electronic publication, National University of Ireland, Galway, 2009,

    Google Scholar 

  31. [31]

    Novakovsky A.B., Abilities and base principles of program module “GRAPHS”, Komi Scientific Center Press, Syktyvkar, 2004

    Google Scholar 

  32. [32]

    Clarke K.R., Gorley R.N., PRIMER v5: User manual/tutorial, PRIMER-E Ltd Press, Plymouth, UK, 2001

    Google Scholar 

  33. [33]

    Warwick R.M., Clarke K.R., Practical measures of marine biodiversity based on relatedness of species, Oceanogr. Mar. Biol. Annu. Rev., 2001, 39, 207–231

    Google Scholar 

  34. [34]

    Clarke K.R., Warwick R.M., A taxonomic Distinctness Index and its statistical properties, J. Appl. Ecol., 1998, 35, 523–531

    Article  Google Scholar 

  35. [35]

    Warwick R.M., Clarke K.R., Taxonomic distinctness and environmental assessment, J. Appl. Ecol., 1998, 35, 532–543

    Article  Google Scholar 

  36. [36]

    Mouillot D., Laune J., Tomasini J.A., Aliaume C., Brehmer P., Dutrieux E., et al., Taxonomic diversity of fish, zoobenthic and macrophyte communities along an eutrophication gradient in Mediterranean coastal lagoons, Hydrobiologia, 2005, 550, 121–130

    Google Scholar 

  37. [37]

    Avise J.C., Phylogeography: retrospect and prospect, J. Biogeogr., 2009, 36, 3–15

    Article  Google Scholar 

  38. [38]

    Barinova S.S., Nevo E., The Upper Jordan River algal communities are evidence of long-term climatic and anthropogenic impacts, J. Wat. Resour. Protect., 2010, 2, 507–526

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sophia S. Barinova.

About this article

Cite this article

Barinova, S.S., Petrov, A. & Nevo, E. Comparative analysis of algal biodiversity in the rivers of Israel. cent.eur.j.biol. 6, 246–259 (2011).

Download citation


  • Algae
  • Diversity
  • Distribution
  • Semi-arid climate
  • Israel
  • Taxonomic distinctness indices
  • Phylogenetic diversity
  • Statistical phylogeography