Skip to main content
Log in

L-rhamnose and L-fucose suppress cancer growth in mice

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

It is documented that deficient fucosylation may play an important role in the pathogenesis of cancer. Since the supplementation of L-fucose could restore fucosylation in both in vitro and in vivo conditions, our intent was to examine the effect of intraperitoneal administration of L-fucose and L-rhamnose (a similar deoxysaccharide) on tumour growth, mitotic activity and metastatic setting of a solid form of Ehrlich carcinoma as well as on the survival rate of tumour bearing mice. Both L-fucose and L-rhamnose exerted a significant suppressive effect on tumour growth (P<0.05). After 10 days of therapy, the greatest inhibition of tumour growth expressed as a percentage of controls was observed in L-rhamnose at a dose of 3 g/kg/day (by 62%) and L-fucose at a dose of 5 g/kg/day (by 47%). Moreover, the mitotic index decreased with increasing doses of L-fucose and L-rhamnose. Prolonged survival of tumour bearing mice was observed after 14 consecutive days of daily administering L-rhamnose. Its optimal dose was estimated to be 3.64 g/kg/day. L-Fucose, however, displayed only a slight effect on the survival of the mice. Our results suggest that L-fucose and especially L-rhamnose have anticancer potential. This study is the first to demonstrate the tumour-inhibitory effect of L-rhamnose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang J.W., Ambros R.A., Weber P.B., Rosano T.G., Fucosyltransferase and α-L-fucosidase activities and fucose levels in normal and malignant endometrial tissue, Cancer Res., 1995, 55, 3654–3658

    CAS  PubMed  Google Scholar 

  2. Hakomori S., Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens, Adv. Cancer Res., 1989, 52, 257–331

    Article  CAS  PubMed  Google Scholar 

  3. Fernandez-Rodriguez J., Paez de la Cadena M., Martinez-Zorzano V.S., Rodriguez-Berrocal F.J., Fucose levels in sera and in tumours of colorectal adenocarcinoma patients, Cancer Lett., 1997, 121, 147–153

    Article  CAS  PubMed  Google Scholar 

  4. Patel P.S., Adhvaryu S.G., Balar D.B., Parikh B.J., Shah P.M., Clinical application of serum levels of sialic acid, fucose and seromucoid fraction as tumour markers in human leukemias, Anticancer Res., 1994, 14, 747–751

    CAS  PubMed  Google Scholar 

  5. Hakomori S., Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines, Adv. Exp. Med. Biol., 2001, 491, 369–402

    CAS  PubMed  Google Scholar 

  6. Zhao Y.Y., Takahashi M., Gu J.-G., Miyoshi E., Matsumoto A., Kitazume S., et al., Functional roles of N-glycans in cell signaling and cell adhesion in cancer, Cancer Sci., 2008, 99, 1304–1310

    Article  CAS  PubMed  Google Scholar 

  7. Listinsky J.J., Listinsky C.M., Alapati V., Siegal G.P., Cell surface fucose ablation as a therapeutic strategy for malignant neoplasms, Adv. Anat. Pathol., 2001, 8, 330–337

    Article  CAS  PubMed  Google Scholar 

  8. Sakuma K., Fujimoto I., Hitoshi S., Tanaka F., Ikeda T., Tanabe K., et al., An N-glycan structure correlates with pulmonary metastatic ability of cancer cells, Biochem. Biophys. Res. Commun., 2006, 340, 829–835

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi T., Ikeda Y., Miyoshi E., Yaginuma Y., Ishikawa M., Taniguchi N., α1,6fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas, Int. J. Cancer, 2000, 88, 914–919

    Article  CAS  PubMed  Google Scholar 

  10. Geng F., Shi B.Z., Yuan Y.F., Wu X.Z., The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients: prognostic implications, Cell Res., 2004, 14, 423–433

    Article  CAS  PubMed  Google Scholar 

  11. Miyoshi E., Noda K., Ko J.H., Ekuni A., Kitada T., Uozumi N., et al., Overexpression of α1-6 fucosyltransferase in hepatoma cells suppresses intrahepatic metastasis after splenic injection in athymic mice, Cancer Res., 1999, 59, 2237–2243

    CAS  PubMed  Google Scholar 

  12. Osumi D., Takahashi M., Miyoshi E., Yokoe S., Lee S.H., Noda K., et al., Core fucosylation of E-cadherin enhances cell-cell adhesion in human colon carcinoma WiDr cells, Cancer Sci., 2009, 100, 888–895

    Article  CAS  PubMed  Google Scholar 

  13. MacDougall S.L., Schwarting G.A., Parkinson D., Sullivan A.K., Increased fucosylation of glycolipids in a human leukaemia cell line (K562-Clone I) with decreased sensitivity to NK-mediated lysis, Immunology, 1987, 62, 75–80

    CAS  PubMed  Google Scholar 

  14. Becker D.J., Lowe J.B., Fucose: biosynthesis and biological function in mammals, Glycobiology, 2003, 13, 41R–53R

    Article  CAS  PubMed  Google Scholar 

  15. Moriwaki K., Noda K., Furukawa Y., Ohshima K., Uchiyama A., Nakagawa T., et al., Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling, Gastroenterology, 2009, 137, 188–198

    Article  CAS  PubMed  Google Scholar 

  16. Falschlehner C., Emmerich C.H., Gerlach B., Walczak H., TRAIL signalling: Decisions between life and death, Int. J. Biochem. Cell Biol., 2007, 39, 1462–1475

    Article  CAS  PubMed  Google Scholar 

  17. Ripka J., Adamany A., Stanley P., Two chinese hamster ovary glycosylation mutants affected in the conversion of GDP-mannose to GDP-fucose, Arch. Biochem. Biophys., 1986, 249, 533–545

    Article  CAS  PubMed  Google Scholar 

  18. Mullen J.L., Rosato F.E., Allen T.R., Miller E.E., Roseman J., Rosato E.F., Continuous intravenous fucose therapy in rat mammary cancer II, J. Surg. Oncol., 1973, 5, 6–9

    Article  Google Scholar 

  19. Rosato F.E., Mullen J.L., Rosato E.F., Steiger E., Miller E.E., Continuous intravenous fucose treatment of rat mammary tumor, J. Surg. Oncol., 1972, 4, 94–101

    Article  CAS  PubMed  Google Scholar 

  20. Wolfe D., Roseman J.M., Miller E., Seltzer M.H., Rosato F.E., The effect of L-fucose on rat mammary tumor growth I. In vivo Studies, J. Surg. Oncol., 1971, 3, 73–77

    Article  CAS  PubMed  Google Scholar 

  21. Seltzer M.H., Roseman J.M., Wolfe D.E., Tsou K.C., Miller E.E., Rosato F.E., The effects of L-fucose on rat mammary tumor growth, Growth, 1969, 33, 353–359

    CAS  PubMed  Google Scholar 

  22. Roszkowski W., Beuth J., Ko H.L., Uhlenbruck G, Pulverer G., Blocking of lectin-like adhesion molecules on pulmonary cells inhibits lung sarcoma L-1 colonization in BALB/c-mice, Experientia, 1989, 45, 584–588

    Article  CAS  PubMed  Google Scholar 

  23. Giraud M.F., Naismith J.H., The rhamnose pathway, Curr. Opin. Struct. Biol., 2000, 10, 687–696

    Article  CAS  PubMed  Google Scholar 

  24. Ishihara H., Massaro D.J., Heath E.C., The metabolism of L-fucose. 3. The enzymatic synthesis of beta-L-fucose 1-phosphate, J. Biol. Chem., 1968, 243, 1103–1109

    CAS  PubMed  Google Scholar 

  25. Tymiak A.A., Norman J.A., Bolgar M., DiDonato G.C., Lee M.H., Parker W.L., et al., Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus, Proc. Natl. Acad. Sci. USA, 1993, 90, 8189–8193

    Article  CAS  PubMed  Google Scholar 

  26. Malawista I., Davidson E.A., Isolation and identification of rhamnose from rabbit skin, Nature, 1961, 192, 871–872

    Article  CAS  PubMed  Google Scholar 

  27. Condaminet B., Redziniak G., Monsigny M., Kieda C., Ultraviolet rays induced expression of lectins on the surface of a squamous carcinoma keratinocyte cell line, Exp. Cell. Res., 1997, 232, 216–224

    Article  CAS  PubMed  Google Scholar 

  28. Tonetti M., Sturla L., Bisso A., Zanardi D., Benatti U., De Flora A., The metabolism of 6-deoxyhexoses in bacterial and animal cells, Biochimie, 1998, 80, 923–931

    Article  CAS  PubMed  Google Scholar 

  29. Shi S.R., Chaiwun B., Young L., Cote R.J., Taylor C.R., Antigen retrieval technique utilizing citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalinfixed paraffin sections, J. Histochem. Cytochem., 1993, 41, 1599–1604

    CAS  PubMed  Google Scholar 

  30. Carter W.H. Jr, Wampler G.L., Stablein D.M., Campbell E.D., Drug activity and therapeutic synergism in cancer treatment, Cancer Res., 1982, 42, 2963–2971

    CAS  PubMed  Google Scholar 

  31. Tomšik P., Stoklasová A., Mičuda S., Niang M., Šuba P., Knižek J., et al., Evaluation of the antineoplastic activity of L-rhamnose in vitro. A comparison with 2-deoxyglucose, Acta Medica (Hradec Kralove), 2008, 51, 113–119

    Google Scholar 

  32. Bekesi J.G., Molnar Z., Winzler R.J., Inhibitory effect of d-glucosamine and other sugar analogs on the viability and transplantability of ascites tumor cells, Cancer Res., 1969, 29, 353–359

    CAS  PubMed  Google Scholar 

  33. Fare G., Sammons D.C., Seabourne F.A., Woodhouse D.L., Lethal action of sugars on ascites tumor cells in vitro, Nature, 1967, 213, 308–309

    Article  CAS  PubMed  Google Scholar 

  34. Tsuda M., Yoshioka Y., Kataoka N., Tachibana M., Maeda Y., Uehara N., et al., Isolation and characterization of carcinostatic liver factors active in vitro, Gann, 1965, 56, 69–74

    CAS  PubMed  Google Scholar 

  35. Roseman J.M., Miller E.E., Seltzer M.H., Wolfe D., Rosato F.E., The effect of L-fucose on rat mammary tumor growth II. In vitro studies, J. Surg. Oncol., 1971, 3, 79–88

    Article  CAS  PubMed  Google Scholar 

  36. Cox R.P., Gesner B.M., Studies on the effects of simple sugars on mammalian cells in culture and characterization of the inhibition of 3T3 fibroblasts by L-fucose, Cancer Res., 1968, 28, 1162–1172

    CAS  PubMed  Google Scholar 

  37. Staňková J., Fucose-activated killer cells. I. Enhanced TNF-α mRNA accumulation and protein production, J. Leukoc. Biol., 1992, 52, 188–196

    PubMed  Google Scholar 

  38. Wild M.K., Lühn K., Marquardt T., Vestweber D., Leukocyte adhesion deficiency II: therapy and genetic defect, Cells Tissues Organs, 2002, 172, 161–173

    Article  CAS  PubMed  Google Scholar 

  39. Chan J.Y, Nwokoro N.A., Schachter H., L-Fucose metabolism in mammals. The conversion of L-fucose to two moles of L-lactate, of L-galactose to L-lactate and glycerate, and of D-arabinose to L-lactate and glycollate, J. Biol. Chem., 1979, 254, 7060–7068

    CAS  PubMed  Google Scholar 

  40. Bekesi J.G., Winzler R.J., The metabolism of plasma glycoproteins. Studies on the incorporation of L-fucose-1-14C into tissue and serum in the normal rat, J. Biol. Chem., 1967, 242, 3873–3879

    CAS  PubMed  Google Scholar 

  41. Coffey J.W., Miller O.N., Sellinger O.Z., The metabolism of L-fucose in the rat, J. Biol. Chem., 1964, 39, 4011–4017

    Google Scholar 

  42. Hallemeesch M.M., Lamers W.H., Soeters P.B., Deutz N.E., Increased lactulose/rhamnose ratio during fluid load is caused by increased urinary lactulose excretion, Am. J. Physiol Gastrointest. Liver Physiol., 2000, 278, G83–G88

    CAS  PubMed  Google Scholar 

  43. Taylor R.M., Bjarnason I., Cheeseman P., Davenport M., Baker A.J., Mieli-Vergani G., et al., Intestinal permeability and absorptive capacity in children with portal hypertension, Scand. J. Gastroenterol., 2002, 37, 807–811

    CAS  PubMed  Google Scholar 

  44. D’Antiga L., Dhawan A., Davenport M., Mieli-Vergani G., Bjarnason I., Intestinal absorption and permeability in paediatric short-bowel syndrome: a pilot study, J. Pediatr. Gastroenterol. Nutr., 1999, 29, 588–593

    Article  PubMed  Google Scholar 

  45. Krecic M.R., Steiner J.M., Kern M.R., Williams D.A., Kinetics and postmucosal effects on urinary recovery of 5 intravenously administered sugars in healthy cats, Can. J. Vet. Res., 2003, 67, 88–93

    CAS  PubMed  Google Scholar 

  46. Bjarnason I., Macpherson A., Hollander D., Intestinal permeability: an overview, Gastroenterology, 1995, 108, 1566–1581

    Article  CAS  PubMed  Google Scholar 

  47. Tomsik P., Sispera L., Rezacova M., Niang M., Stoklasova A., Cerman J., et al., Increased melibiose/rhamnose ratio in bile of rats with acute cholestasis, J. Gastroenterol. Hepatol., 2008, 23, 1934–1940

    Article  CAS  PubMed  Google Scholar 

  48. Malagon I., Onkenhout W., Klok M., van der Poel P.F., Bovill J.G., Hazekamp M.G., Rhamnose and rhamnitol in dual sugar permeability tests, J. Pediatr. Gastroenterol. Nutr., 2006, 43, 265–266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Tomsik.

About this article

Cite this article

Tomsik, P., Soukup, T., Cermakova, E. et al. L-rhamnose and L-fucose suppress cancer growth in mice. cent.eur.j.biol. 6, 1–9 (2011). https://doi.org/10.2478/s11535-010-0087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-010-0087-0

Keywords

Navigation