Skip to main content
Log in

Electromagnetic field effects on Artemia hatching and chromatin state

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The influence of magnetic fields on hatching and chromatin state of brine shrimp, Artemia sp., was investigated. Dry Artemia cysts were exposed to a magnetic field of intensity 25 mT for 10 min. The magnetic field was applied in different variants: constant field, rotating field of different directions (right-handed and left-handed) and different magnet polarization. The effect of ultra wideband pulse radiation and microwave radiation was also investigated. The energy density on the surface of object exposed to ultra wideband pulse radiation was 10−2, 10−3, 10−4, 10−5 and 10−6 W/cm2, the power of microwave radiation was 10−4 and 10−5 W/cm2, exposure time - 10 s. After incubation of the cysts for 48 hours in sea water the hatching percentage of Artemia from exposed cysts was higher than in controls. The number of heterochromatin granules was significantly higher in the nauplia (newborn larvae of Artemia) developed from cysts that had been exposed to magnetic and electromagnetic fields. The data obtained demonstrate an increase in percentage hatching of Artemia cysts after treatment with magnetic and electromagnetic fields and chromatin condensation in nauplia. We have also shown different effects of right-handed and left-handed rotating magnetic fields on these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lacy-Hulbert A., Metcalfe J.C., Hesketh R., Biological responses to electromagnetic fields, The FASEB Journal, 1998, 12, 395–420

    CAS  PubMed  Google Scholar 

  2. Bassett C.A., Beneficial effects of electromagnetic fields, J. Cell. Biochem., 1993, 51, 387–393

    CAS  PubMed  Google Scholar 

  3. Henry S.L., Concannon M.J., Yee G.J., The Effect of Magnetic Fields on Wound Healing, Eplasty, 2008, 8, 40–45

    Google Scholar 

  4. Fedrowitz M., Westermann J., Löscher W., Magnetic Field Exposure Increases Cell Proliferation but Does Not Affect Melatonin Levels in the Mammary Gland of Female Sprague Dawley Rats, Cancer Res., 2002, 62, 1356–1363

    CAS  PubMed  Google Scholar 

  5. Chionna A., Dwikat M., Panzarini E., Tenuzzo B., Carla E.C., Verri T., et al., Cell shape and plasma membrane alterations after static magnetic fields exposure, Eur. J. Histochem., 2003, 47, 299–308

    CAS  PubMed  Google Scholar 

  6. Dini L., Abbro L., Bioeffects of moderate-intensity static magnetic fields on cell cultures, Micron, 2005, 36, 195–217

    Article  PubMed  Google Scholar 

  7. Nunes B.S., Carvalho F.D., Guilhermino L.M., Van Stappen G., Use of the genus Artemia in ecotoxicity testing, Environ. Pollut., 2006, 144, 453–462

    Article  CAS  PubMed  Google Scholar 

  8. Sorgeloos P., The use of Artemia in aquaculture, In: The Brine Shrimp Artemia, Universa Press, Wetteren, 1980

    Google Scholar 

  9. Graul E.H., Ruther W., Heinrich W., Allkofer O.C., Kaiser R., Pfohl R., et al., Radiobiological results of the Biostack experiment on board Apollo 16 and 17, Life Sci. Space Res., 1975, 13, 153–159

    CAS  PubMed  Google Scholar 

  10. Gaubin Y., Kovalev E.E., Planel H., Nevzgodina L.V., Gasset G., Pianezzi B., Development capacity of Artemia cysts and lettuce seeds flown in Cosmos 936 and directly exposed to cosmic rays, Aviat. Space Environ. Med., 1979, 50, 134–138

    CAS  PubMed  Google Scholar 

  11. Spooner B.S., Metcalf J., DeBell L., Paulsen A., Noren W., Guikema J.A., Development of the brine shrimp Artemia is accelerated during spaceflight, J. Exp. Zool., 1994, 269, 253–262

    Article  CAS  PubMed  Google Scholar 

  12. Xing G.R., Zheng D.C., Zhou Q.L., Su R.Z., Chen Q.E., Effect of pre-flight treatment with constant magnetic field on development of Artemia eggs retrieved from Chinese Satellite “8885”, Sci. China B, 1991, 34, 699–705

    CAS  PubMed  Google Scholar 

  13. Shckorbatov Y.G., Rudneva I.I., Pasiuga V.N., Kolchigin N.N., Grabina V.A., Ivanchenko D.D., et al., Hatching of eggs of Artemia and changes of heterochromatin state under the influence of electromagnetic fields, 19th International Crimean Conference “Microwave & Telecommunication Technology” (CriMiCo’2009), 14-18 September 2009, Sevastopol, Crimea, Ukraine, 2009, 871–872

  14. Shckorbatov Y.G., Pasiuga V.N., Kolchigin N.N., Grabina V.A., Batrakov D.O., Kalashnikov V.V., et al., The influence of differently polarized microwave radiation on chromatin in human cells, Int. J. Radiat. Biol., 2009, 85, 322–329

    Article  CAS  PubMed  Google Scholar 

  15. Shckorbatov Y.G., He-Ne laser light induced changes in the state of chromatin in human cells, Naturwissenschaften, 1999, 86, 452–453

    Article  CAS  PubMed  Google Scholar 

  16. Nakanishi Y.H., Okigaki T., Kato H., Iwasaki T., Cytological Studies of Artemia salina, Proc. Jap. Acad., 1963, 39, 306–309

    CAS  Google Scholar 

  17. Cotto J., Fox S., Morimoto R., HSF1 granules: a novel stress-induced nuclear compartment of human cells, J. Cell Sci., 1997, 110, 2925–2934

    CAS  PubMed  Google Scholar 

  18. Simard R., The nucleus: action of chemical and physical agents, Int. Rev. Cytol., 1970, 28, 169–211

    Article  CAS  PubMed  Google Scholar 

  19. Shckorbatov Y.G., Shakhbazov V.G., Grigoryeva N.N., Grabina V.A., Microwave irradiation influences on the state of human cell nuclei, Bioelectromagnetics, 1998, 19, 414–419

    Article  CAS  PubMed  Google Scholar 

  20. Liboff A.R., McLeod B.R., Kinetics of channelized membrane ions in magnetic fields, Bioelectromagnetics, 1988, 9, 39–51

    Article  CAS  PubMed  Google Scholar 

  21. Vincze G., Szasz A., Liboff A.R., New theoretical treatment of ion resonance phenomena, Bioelectromagnetics, 2008, 29, 380–386

    Article  CAS  PubMed  Google Scholar 

  22. Binhi V.N., Reply to Comment on ‘Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields’, Phys. Rev., 2003, 68, 1063–1069

    Google Scholar 

  23. Wang KW, Hladky S.B., Absence of effects of low-frequency, low-amplitude magnetic fields on the properties of gramicidin A channels, Biophys. J., 1994, 67, 1473–1483

    Article  CAS  PubMed  Google Scholar 

  24. Garcia-Sancho J., Montero M., Alvarez J., Fonteriz R.I., Sanchez A., Effects of extremely-lowfrequency electromagnetic fields on ion transport in several mammalian cells, Bioelectromagnetics, 1994, 15, 579–588

    Article  CAS  PubMed  Google Scholar 

  25. Blank M., Goodman R., Initial interactions in electromagnetic field-induced biosynthesis, J. Cell. Physiol., 2004, 199, 359–363

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Shckorbatov.

About this article

Cite this article

Shckorbatov, Y., Rudneva, I., Pasiuga, V. et al. Electromagnetic field effects on Artemia hatching and chromatin state. cent.eur.j.biol. 5, 785–790 (2010). https://doi.org/10.2478/s11535-010-0063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-010-0063-8

Keywords

Navigation