Central European Journal of Biology

, Volume 5, Issue 6, pp 785–790 | Cite as

Electromagnetic field effects on Artemia hatching and chromatin state

  • Yuriy Shckorbatov
  • Irina Rudneva
  • Vladimir Pasiuga
  • Valentin Grabina
  • Nikolay Kolchigin
  • Dmitriy Ivanchenko
  • Oleg Kazanskiy
  • Valentin Shayda
  • Oleksandr Dumin
Research Article
  • 63 Downloads

Abstract

The influence of magnetic fields on hatching and chromatin state of brine shrimp, Artemia sp., was investigated. Dry Artemia cysts were exposed to a magnetic field of intensity 25 mT for 10 min. The magnetic field was applied in different variants: constant field, rotating field of different directions (right-handed and left-handed) and different magnet polarization. The effect of ultra wideband pulse radiation and microwave radiation was also investigated. The energy density on the surface of object exposed to ultra wideband pulse radiation was 10−2, 10−3, 10−4, 10−5 and 10−6 W/cm2, the power of microwave radiation was 10−4 and 10−5 W/cm2, exposure time - 10 s. After incubation of the cysts for 48 hours in sea water the hatching percentage of Artemia from exposed cysts was higher than in controls. The number of heterochromatin granules was significantly higher in the nauplia (newborn larvae of Artemia) developed from cysts that had been exposed to magnetic and electromagnetic fields. The data obtained demonstrate an increase in percentage hatching of Artemia cysts after treatment with magnetic and electromagnetic fields and chromatin condensation in nauplia. We have also shown different effects of right-handed and left-handed rotating magnetic fields on these processes.

Keywords

Crustaceans Brine shrimp Rotating magnetic field Ultra wideband irradiation Heterochromatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lacy-Hulbert A., Metcalfe J.C., Hesketh R., Biological responses to electromagnetic fields, The FASEB Journal, 1998, 12, 395–420PubMedGoogle Scholar
  2. [2]
    Bassett C.A., Beneficial effects of electromagnetic fields, J. Cell. Biochem., 1993, 51, 387–393PubMedGoogle Scholar
  3. [3]
    Henry S.L., Concannon M.J., Yee G.J., The Effect of Magnetic Fields on Wound Healing, Eplasty, 2008, 8, 40–45Google Scholar
  4. [4]
    Fedrowitz M., Westermann J., Löscher W., Magnetic Field Exposure Increases Cell Proliferation but Does Not Affect Melatonin Levels in the Mammary Gland of Female Sprague Dawley Rats, Cancer Res., 2002, 62, 1356–1363PubMedGoogle Scholar
  5. [5]
    Chionna A., Dwikat M., Panzarini E., Tenuzzo B., Carla E.C., Verri T., et al., Cell shape and plasma membrane alterations after static magnetic fields exposure, Eur. J. Histochem., 2003, 47, 299–308PubMedGoogle Scholar
  6. [6]
    Dini L., Abbro L., Bioeffects of moderate-intensity static magnetic fields on cell cultures, Micron, 2005, 36, 195–217CrossRefPubMedGoogle Scholar
  7. [7]
    Nunes B.S., Carvalho F.D., Guilhermino L.M., Van Stappen G., Use of the genus Artemia in ecotoxicity testing, Environ. Pollut., 2006, 144, 453–462CrossRefPubMedGoogle Scholar
  8. [8]
    Sorgeloos P., The use of Artemia in aquaculture, In: The Brine Shrimp Artemia, Universa Press, Wetteren, 1980Google Scholar
  9. [9]
    Graul E.H., Ruther W., Heinrich W., Allkofer O.C., Kaiser R., Pfohl R., et al., Radiobiological results of the Biostack experiment on board Apollo 16 and 17, Life Sci. Space Res., 1975, 13, 153–159PubMedGoogle Scholar
  10. [10]
    Gaubin Y., Kovalev E.E., Planel H., Nevzgodina L.V., Gasset G., Pianezzi B., Development capacity of Artemia cysts and lettuce seeds flown in Cosmos 936 and directly exposed to cosmic rays, Aviat. Space Environ. Med., 1979, 50, 134–138PubMedGoogle Scholar
  11. [11]
    Spooner B.S., Metcalf J., DeBell L., Paulsen A., Noren W., Guikema J.A., Development of the brine shrimp Artemia is accelerated during spaceflight, J. Exp. Zool., 1994, 269, 253–262CrossRefPubMedGoogle Scholar
  12. [12]
    Xing G.R., Zheng D.C., Zhou Q.L., Su R.Z., Chen Q.E., Effect of pre-flight treatment with constant magnetic field on development of Artemia eggs retrieved from Chinese Satellite “8885”, Sci. China B, 1991, 34, 699–705PubMedGoogle Scholar
  13. [13]
    Shckorbatov Y.G., Rudneva I.I., Pasiuga V.N., Kolchigin N.N., Grabina V.A., Ivanchenko D.D., et al., Hatching of eggs of Artemia and changes of heterochromatin state under the influence of electromagnetic fields, 19th International Crimean Conference “Microwave & Telecommunication Technology” (CriMiCo’2009), 14-18 September 2009, Sevastopol, Crimea, Ukraine, 2009, 871–872Google Scholar
  14. [14]
    Shckorbatov Y.G., Pasiuga V.N., Kolchigin N.N., Grabina V.A., Batrakov D.O., Kalashnikov V.V., et al., The influence of differently polarized microwave radiation on chromatin in human cells, Int. J. Radiat. Biol., 2009, 85, 322–329CrossRefPubMedGoogle Scholar
  15. [15]
    Shckorbatov Y.G., He-Ne laser light induced changes in the state of chromatin in human cells, Naturwissenschaften, 1999, 86, 452–453CrossRefPubMedGoogle Scholar
  16. [16]
    Nakanishi Y.H., Okigaki T., Kato H., Iwasaki T., Cytological Studies of Artemia salina, Proc. Jap. Acad., 1963, 39, 306–309Google Scholar
  17. [17]
    Cotto J., Fox S., Morimoto R., HSF1 granules: a novel stress-induced nuclear compartment of human cells, J. Cell Sci., 1997, 110, 2925–2934PubMedGoogle Scholar
  18. [18]
    Simard R., The nucleus: action of chemical and physical agents, Int. Rev. Cytol., 1970, 28, 169–211CrossRefPubMedGoogle Scholar
  19. [19]
    Shckorbatov Y.G., Shakhbazov V.G., Grigoryeva N.N., Grabina V.A., Microwave irradiation influences on the state of human cell nuclei, Bioelectromagnetics, 1998, 19, 414–419CrossRefPubMedGoogle Scholar
  20. [20]
    Liboff A.R., McLeod B.R., Kinetics of channelized membrane ions in magnetic fields, Bioelectromagnetics, 1988, 9, 39–51CrossRefPubMedGoogle Scholar
  21. [21]
    Vincze G., Szasz A., Liboff A.R., New theoretical treatment of ion resonance phenomena, Bioelectromagnetics, 2008, 29, 380–386CrossRefPubMedGoogle Scholar
  22. [22]
    Binhi V.N., Reply to Comment on ‘Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields’, Phys. Rev., 2003, 68, 1063–1069Google Scholar
  23. [23]
    Wang KW, Hladky S.B., Absence of effects of low-frequency, low-amplitude magnetic fields on the properties of gramicidin A channels, Biophys. J., 1994, 67, 1473–1483CrossRefPubMedGoogle Scholar
  24. [24]
    Garcia-Sancho J., Montero M., Alvarez J., Fonteriz R.I., Sanchez A., Effects of extremely-lowfrequency electromagnetic fields on ion transport in several mammalian cells, Bioelectromagnetics, 1994, 15, 579–588CrossRefPubMedGoogle Scholar
  25. [25]
    Blank M., Goodman R., Initial interactions in electromagnetic field-induced biosynthesis, J. Cell. Physiol., 2004, 199, 359–363CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Yuriy Shckorbatov
    • 1
  • Irina Rudneva
    • 2
  • Vladimir Pasiuga
    • 1
  • Valentin Grabina
    • 1
  • Nikolay Kolchigin
    • 1
  • Dmitriy Ivanchenko
    • 1
  • Oleg Kazanskiy
    • 1
  • Valentin Shayda
    • 2
  • Oleksandr Dumin
    • 1
  1. 1.Kharkiv National UniversityKharkivUkraine
  2. 2.Institute of Biology of Southern Seas of the National Academy of Sciences of UkraineSevastopolUkraine

Personalised recommendations