Skip to main content

Radish plant behaviour under short-term elevated ozone fumigation

Abstract

Effects of short-term ozone (O3) fumigation on radish (Raphanus sativus L.) plants were examined in growth chambers under controlled environment conditions. Plants were exposed to 0 μg/m3 (reference), 80 μg/m3, 160 μg/m3 and 240 μg/m3 O3 concentrations for 7 h per day for five days. Day/night temperature was 21°C/14°C and photoperiod 16 h. Chlorophyll content was evaluated spectrophotometrically. Chromatographic analysis of saccharides was also undertaken. The results showed that elevated O3 inhibited the growth of radish rhizocarps, net assimilation rate and biomass accumulation. O3 induced leaf desiccation, necrosis and premature senescence, but a typical reaction of plants to O3 stress was the rapid regeneration of new leaves. O3 inhibited accumulation of carotenoids more than chlorophylls. The higher photosynthetic pigment content in newly generated radish leaves may be regarded as an adaptation of the photosynthetic system to O3. Leaf saccharide metabolism and incorporation depended on O3 concentration. Rapid regeneration of new leaves and increased content of photosynthetic pigments is the typical reaction of radish plants to O3 stress.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Naja M., Akimoto H., Staehelin J., Ozone in background and photochemically aged air over central Europe: Analysis of long-term ozonesonde data from Hohenpeissenberg and Payerne, J. Geophys. Res., 2003, 108, 4063–4074

    Article  CAS  Google Scholar 

  2. [2]

    Mauzerall D.L., Wang X., Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standard setting in the United States, Europe and Asia, Annu. Rev. Energy Environ., 2001, 26, 237–268

    Article  Google Scholar 

  3. [3]

    Fuhrer J., Ozone risk for crops and pastures in present and future climates, Naturwissenschaften, 2009, 96, 173–194

    Article  PubMed  CAS  Google Scholar 

  4. [4]

    Gimeno B.S., Bermejo V., Reinert R.A., Zheng Y., Barnes J.D., Adverse effects of ambient ozone on watermelon yield and physiology at a rural site in Eastern Spain, New Phytol., 1999, 144, 245–260

    Article  CAS  Google Scholar 

  5. [5]

    Fumagalli I., Gimeno B.S., Velissariou D., De Temmerman L., Mills G., Evidence of ozone-induced adverse effects on crops in the Mediterranean region, Atmos. Environ., 2001, 35, 2583–2587

    Article  CAS  Google Scholar 

  6. [6]

    Calvo E., Martin C., Sanz M.J., Ozone sensitivity differences in five tomato cultivars: visible injury and effects on biomass and fruits, Water Air Soil Poll., 2007, 186, 167–181

    Article  CAS  Google Scholar 

  7. [7]

    Inclán R., Ribas A., Peñuelas J., Gimeno B.S., The relative sensitivity of different Mediterranean plant species to ozone exposure, Water Air Soil Poll., 1999, 116, 273–277

    Article  Google Scholar 

  8. [8]

    He X.-Y., Fu S.-L., Chen W., Zhao T.-H., Xu S., Tuba Z., Changes in effects of ozone exposure on growth, photosynthesis, and respiration of Ginkgo biloba in Shenyang urban area, Photosynthetica, 2007, 45, 555–561

    Article  CAS  Google Scholar 

  9. [9]

    Olbrich M., Gerstner E., Welzl G., Winkler J.B., Ernst D., Transcript responses in leaves of ozonetreated beech saplings seasons at an outdoor free air model fumigation site over two growing seasons, Plant Soil, 2009, 323, 61–74

    Article  CAS  Google Scholar 

  10. [10]

    Podila G.K., Paolacci A.R., Badiani M., The impacts of greenhouse gases on antioxidants and foliar defence compounds. In: Karnosky D.F., Ceulemans R., Scarascia-Mugnozza G.E., Innes J.L., (Eds.), The impact of carbon dioxide and other greenhouse gases on forest ecosystems, CABI Publishing, 2001

  11. [11]

    Heath R.L., Possible mechanisms for the inhibition of photosynthesis by ozone, Photosynth. Res., 1994, 39, 439–451

    Article  CAS  Google Scholar 

  12. [12]

    Sircelj H., Batic F., Detecting oxidative stress in leaves of two chosen species with analysis of ascorbic acid and pigments by high performance liquid chromatography, Bulg. J. Plant Physiol., 1998, 24, 261–273

    Google Scholar 

  13. [13]

    Girgzdiene R., Bycenkiene S., Girgzdys A., Variation and trends of ground-level ozone and AOT40 in the rural areas of Lithuania, Environ. Monit. Assess., 2007, 127, 327–335

    Article  PubMed  CAS  Google Scholar 

  14. [14]

    Szaro R.C., Bytnerowicz A., Ozslányi J., Effects of air pollution on forest health and biodiversity in forests of the Carpathian mountains: an overview, In: Szaro R.C., Bytnerowicz A., Ozslányi J., (Eds.), Effects of air pollution on forest health and biodiversity in forests of the Carpathian mountains, Series I: Life and Behavioural Sciences — 345, IOS Press, Amsterdam-Berlin-Oxford-Tokyo-Washington, 2002

    Google Scholar 

  15. [15]

    Gavrilenko V.F, Zigalova T.V, A great practical on photosynthesis, Academia, Russia, 2003, (in Russian)

    Google Scholar 

  16. [16]

    Saitanis C.J., Karandinos M.G., Effects of ozone on tobacco (Nicotiana tabacum L.) varieties, J. Agron. Crop Sci., 2002, 188, 51–58

    Article  CAS  Google Scholar 

  17. [17]

    Urbonavičiūtė A., Ulinskaitė R., Samuolienė G., Sakalauskaitė J., Duchovskis P., Brazaitytė A., et al., The response of radish phytohormone system to ozone stress, Horticulture and vegetable growing, 2006, 25, 170–176

    Google Scholar 

  18. [18]

    Tamaoki M., The role of phytohormone signalling in ozone-induced cell death in plants, Plant Signal. Behav., 2008, 3, 166–174

    PubMed  Google Scholar 

  19. [19]

    Kangasjärvi J., Jaspers P., Kollist H., Signalling and cell death in ozone-exposed plants, Plant Cell Environ., 2005, 28, 1021–1036

    Article  Google Scholar 

  20. [20]

    Jiang F., Hartung W., Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal, J. Exp. Bot., 2008, 59, 37–43

    Article  PubMed  CAS  Google Scholar 

  21. [21]

    Greitner C.S., Pell E.J., Winner W.E., Analysis of aspen foliage exposed to multiple stresses: ozone, nitrogen deficiency and drought, New Phytol., 1994, 127, 579–589

    Article  CAS  Google Scholar 

  22. [22]

    Munné-Bosch S., Alegre L., Die and let live: leaf senescence contributes to plant survival under drought stress, Funct. Plant Biol., 2004, 31, 203–216

    Article  Google Scholar 

  23. [23]

    Sasaki-Sekimoto Y., Taki N., Obayashi T., Aono M., Matsumoto F., Sakurai N., et al., Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis, Plant J., 2005, 44, 653–668

    Article  PubMed  CAS  Google Scholar 

  24. [24]

    Kacperska A., Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity?, Physiol. Plantarum, 2004, 122, 159–168

    Article  CAS  Google Scholar 

  25. [25]

    Hofstra G., Ali A., Wukasch R.T., Fletcher R.A., The rapid inhibition of root respiration after exposure of bean (Phaseolus vulgaris L.) plants to ozone, Atmos. Environ., 1981, 15, 483–487

    Article  CAS  Google Scholar 

  26. [26]

    Fuhrer J., Bungener P., Effects of air pollutants on plants, Analusis, 1999, 27, 355–360

    Article  CAS  Google Scholar 

  27. [27]

    Andersen C.P., Source-sink balance and carbon allocation below ground in plants exposed to ozone, New Phytol., 2003, 157, 213–228

    Article  CAS  Google Scholar 

  28. [28]

    Roitsch T., Regulation of source/sink relations by cytokinins, Plant Growth Regul., 2000, 32, 359–367

    Article  CAS  Google Scholar 

  29. [29]

    Hare P.D., Cress W.A., van Staden J., The involvement of cytokinins in plant responses to environmental stress, Plant Growth Regul., 1997, 23, 79–103

    Article  CAS  Google Scholar 

  30. [30]

    Brenner M.L., Cheikh N., The role of hormones in photosynthate partitioning and seed filling, In: Davies P.J., (Ed.), Plant hormones: physiology, biochemistry, and molecular biology, 2nd Ed., Kluwer Academic Publishers, Dordecht, The Netherlands, 1995

    Google Scholar 

  31. [31]

    Kiseleva I.S., Kaminskaya O.A., Hormonal regulation of assimilate utilization in barley leaves in relation to the development of their source function, Russ. J. Plant Physiol., 2002, 49, 534–540

    Article  CAS  Google Scholar 

  32. [32]

    Yang J.C., Wang Z.Q., Zhu Q.S., Carbon remobilization and grain filling in Japonica/Indica hybrid rice subjected to postanthesis water deficits, Agronomy J., 2002, 94, 102–109

    Article  Google Scholar 

  33. [33]

    Yang J.C., Zhang J.H., Wang Z.Q., Zhu Q.S., Liu L.J., Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling, Plant Cell Environ., 2003, 26, 1621–1631

    Article  CAS  Google Scholar 

  34. [34]

    Saitanis C.J., Riga-Karandinos A.N., Karandinos M.G., Effects of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.) varietes, Chemosphere, 2001, 42, 945–953

    Article  PubMed  CAS  Google Scholar 

  35. [35]

    Wustman B.A., Oksanen E., Karnosky D.F., Noormets A., Isebrands J.G., Pregitzer K.S., et al., Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3?, Environ. Pollut., 2001, 115, 473–481

    Article  PubMed  CAS  Google Scholar 

  36. [36]

    Oksanen E., Häikiö E., Sober J., Karnosky D.F., Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity, New Phytol., 2003, 161, 791–799

    Article  CAS  Google Scholar 

  37. [37]

    Demmig-Adams B., Adams III, W.W., The role of xanthophylls cycle carotenoids in the protection of photosynthesis, Trends Plant Sci., 1996, 1, 21–26

    Article  Google Scholar 

  38. [38]

    Havaux M., Carotenoids as membrane stabilizers in chloroplasts, Trends Plant Sci., 1998, 3, 147–151

    Article  Google Scholar 

  39. [39]

    Salerno G.L., Curatti L., Origin of sucrose metabolism in higher plants: when, how and why?, Trends Plant Sci., 2003, 8, 63–69

    Article  PubMed  CAS  Google Scholar 

  40. [40]

    Weber H., Borisjuk L., Wobus U., Molecular physiology of legume seed development, Annu. Rev. Plant Biol., 2005, 56, 253–279

    Article  PubMed  CAS  Google Scholar 

  41. [41]

    Grantz D.A., Farrar J.F., Ozone inhibits phloem loading from a transport pool: compartmental efflux analysis in Pima cotton, Aust. J. Plant Physiol., 2000, 27, 859–868

    CAS  Google Scholar 

  42. [42]

    Moore B.D., Cheng S.-H., Sims D., Seemann J.R., The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2, Plant Cell Environ., 1999, 22, 567–582

    Article  CAS  Google Scholar 

  43. [43]

    Dizengremel P., Effects of ozone on the carbon metabolism of forest trees, Plant Physiol. Biochem., 2001, 39, 729–742

    Article  CAS  Google Scholar 

  44. [44]

    Singh S., Agrawal S.B., Use of ethylene diurea (EDU) in assessing the impact of ozone on growth and productivity of five cultivars of Indian wheat (Triticum aestivum L.), Environ. Monit. Assess., 2009, 159, 125–141

    Article  PubMed  CAS  Google Scholar 

  45. [45]

    Girgždiene R., Girgždys A., The troposphere ozone — an indicator of the environmental sustainability, Environmental research, engineering and management, 2003, 4, 45–50

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jurga Sakalauskaitė.

About this article

Cite this article

Sakalauskaitė, J., Brazaitytė, A., Urbonavičiūtė, A. et al. Radish plant behaviour under short-term elevated ozone fumigation. cent.eur.j.biol. 5, 674–681 (2010). https://doi.org/10.2478/s11535-010-0057-6

Download citation

Keywords

  • Radish (Raphanus sativus L.)
  • Ozone (O3)
  • Growth indices
  • Photosynthetic pigments
  • Saccharides