Skip to main content

Enhancement of tyrosine hydroxylase expression by Cordyceps militaris

Abstract

Cordyceps militaris is a popular medicinal mushroom, and has received extensive attention for medical application because of its various physiological activities. However, there is limited information about the function of Cordyceps militaris on dopaminergic system. This study has attempted to evaluate the effect of cultured fruiting bodies of Cordyceps militaris extract (CME) on the expression of the tyrosine hydroxylase (TH) gene in PC12 cells and rat brain and stomach. Related mRNA levels were determined by the RT-PCR. Protein levels were measured by Western blot and immunohistochemistry. Our results demonstrated CME induced TH gene expression both in vitro and in vivo. Treatment of 10 µg/ml and 20 mg/kg CME to PC12 cells and rat cells yielded significant increases of TH protein levels. Significantly, TH immunoreactive neurons were detected not only in the brain but also in the stomach. TH-immunohistochemical staining was markedly enhanced in animals treated with CME compared to those in the untreated control. These results suggest that CME can upregulate the dopaminergic (DArgic) system, and may contribute to neuroprotection in neurodegenerative diseases.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Nagatsu T., Levitt M., Undenfriend S., Tyrosine hydroxylase, the initial step in norepinephrine biosynthesis, J. Biol. Chem., 1964, 239, 2910–2917

    CAS  PubMed  Google Scholar 

  2. [2]

    Nakashima A., Hayashi N., Kaneko Y.S., Mori K., Sabban E.L., Nagatsu T., et al., Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines, J. Neural. Transm., 2009, 116, 1355–1362

    Article  CAS  PubMed  Google Scholar 

  3. [3]

    Moore D.J., West A.B., Dawson V.L., Dawson T.M., Molecular pathophysiology of Parkinson’s disease, Annu. Rev. Neurosci., 2005, 28, 57–87

    Article  CAS  PubMed  Google Scholar 

  4. [4]

    Von Bohlen und Halbach O., Schober A., Krieglstein K., Genes, proteins, and neurotoxins involved in Parkinson’s disease, Prog. Neurobiol., 2004, 73, 151–177

    Article  CAS  Google Scholar 

  5. [5]

    Manyam B.V., Dhanasekaran M., Hare T.A., Neuroprotective effects of the antiparkinson drug Mucuna pruriens., Phytother. Res., 2004, 18, 706–712

    Article  PubMed  Google Scholar 

  6. [6]

    Ramassamy C., Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets, Eur. J. Pharmacol., 2006, 545, 51–64

    Article  CAS  PubMed  Google Scholar 

  7. [7]

    Leung K.W., Yung K.K., Mak N.K., Chan Y.S., Fan T.P., Wong R.N., Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity, Neuropharmacology, 2007, 52, 827–35

    Article  CAS  PubMed  Google Scholar 

  8. [8]

    Sierpinska A., Towards an integrated management of Dendrolimus pini L., Proceedings: Population dynamics, impacts, and integrated management of forest defoliation insects, USDA forest service general technical report NE, 1998, 247, 129–142

    Google Scholar 

  9. [9]

    Cunningham K.G., Hutchinson S.A., Manson W., Spring F.S., Cordycepin, a metabolic product from cultures of Cordyceps militaris (Linn.) Link, Nature, 1950, 166, 949

    Article  CAS  PubMed  Google Scholar 

  10. [10]

    Seldin D., Urbano S.L.A., McCaffrey F., Foss R., Phase I trial of cordycepin and deoxycoformycin in TdT-positive acute leukemia, Blood, 1997, 90, 246

    Google Scholar 

  11. [11]

    Zhou X.X., Meyer C.U., Schmidtke Zepp P.F., Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells, Eur. J. Pharmacol., 2002, 453, 309–317

    Article  CAS  PubMed  Google Scholar 

  12. [12]

    Kim H.G., Shrestha B., Lim S.Y., Yoon D.H., Chang W.C., Shin D.J., et al., Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells, Eur. J. Pharmacol., 2006, 545, 192–199

    Article  CAS  PubMed  Google Scholar 

  13. [13]

    Won S.Y., Park E.H., Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris, J. Ethnopharmacol., 2005, 96, 555–561

    Article  PubMed  Google Scholar 

  14. [14]

    Yu R., Yang W., Song L., Yan C., Zhang Z., Zhao Y., Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris, Carbohydr. Polym., 2007, 70, 430–436

    Article  CAS  Google Scholar 

  15. [15]

    Kim C.S., Lee S.Y., Cho S.H., Ko Y.M., Kim B.H., Kim H.J., et al., Cordyceps militaris induces the IL-18 expression via its promoter activation for IFN-gamma production, J. Ethnopharmacol., 2008, 120, 366–371

    Article  PubMed  Google Scholar 

  16. [16]

    Hsu C.H., Sun H.L., Sheu J.N., Ku M.S., Hu C.M., Chan Y., et al., Effects of the immunomodulatory agent Cordyceps militaris on airway inflammation in a mouse asthma model, Pediatr. Neonatol., 2008, 49, 171–178

    Article  PubMed  Google Scholar 

  17. [17]

    Nagatsu T., Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology, Essays Biochem., 1995, 30, 15–35

    CAS  PubMed  Google Scholar 

  18. [18]

    Theofilopoulos S., Goggi J., Riaz S.S., Jauniaux E., Stern G.M., Bradford H.F., Parallel induction of the formation of dopamine and its metabolites with induction of tyrosine hydroxylase expression in foetal rat and human cerebral cortical cells by brain-derived neurotrophic factor and glial-cell derived neurotrophic factor, Brain Res. Dev. Brain Res., 2001, 127, 111–122

    Article  CAS  PubMed  Google Scholar 

  19. [19]

    Lopez-Toledano M.A., Redondo C., Lobo M.V., Reimers D., Herranz A.S., Paino C.L., et al., Tyrosine hydroxylase induction by basic fibroblast growth factor and cyclic AMP analogs in striatal neural stem cells: role of ERK1/ERK2 mitogen-activated protein kinase and protein kinase C, J. Histochem. Cytochem., 2004, 52, 1177–1189

    Article  CAS  PubMed  Google Scholar 

  20. [20]

    Gizang-Ginsberg E., Ziff E.B., Nerve growth factor regulates tyrosine hydroxylase gene transcription through a nucleoprotein complex that contains c-fos, Genes Dev., 1990, 4, 477–491

    Article  CAS  PubMed  Google Scholar 

  21. [21]

    Carroll J.M., Evinger M.J., Goodman H.M., Joh T.H., Differential and coordinate regulation of TH and PNMT mRNAs in chromaffin cell cultures by second messenger system activation and steroid treatment, J. Mol. Neurosci., 1991, 3, 75–83

    Article  CAS  PubMed  Google Scholar 

  22. [22]

    Minner L.L., Pandalai S.P., Weisberg E.P., Sell S.L., Kovacs D.M., Kaplan B.B., Cold-induced alterations in the binding of adrenomedullary nuclear proteins to the promoter region of the tyrosine hydroxylase gene, J. Neurosci. Res., 1992, 33, 10–18

    Article  Google Scholar 

  23. [23]

    Nagamoto-Coombs K., Piech K.M., Best J.A., Sun B., Tank A.W., Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx, Evidence for cyclic amp-responsive element binding protein-independent regulation, J. Biol. Chem., 1997, 272, 6051–6058

    Article  Google Scholar 

  24. [24]

    Kim K.S., Lee M.K., Carroll J., Joh T.H., Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element, J. Biol. Chem.,1993, 25, 15689–15695

    Google Scholar 

  25. [25]

    Tinti C., Conti B., Cubells F.J., Kim S.K., Baker H., Joh T.H., Inducible cAMP early repressor can modulate tyrosine hydroxylase gene expression after stimulation of cAMP synthesis, J. Biol. Chem., 1996, 271, 25375–25381

    Article  CAS  PubMed  Google Scholar 

  26. [26]

    Ng T.B., Wang H.X., Pharmacological actions of Cordyceps, a prized folk medicine, J. Pharm. Pharmacol., 2005, 57, 1509–1519

    Article  CAS  PubMed  Google Scholar 

  27. [27]

    Masocha W., Rottenberg M.E., Kristensson K., Migration of African trypanosomes across the blood-brain barrier, Physiol. Behav., 2007, 92, 110–114

    Article  CAS  PubMed  Google Scholar 

  28. [28]

    Cho H.J., Cho J.Y., Rhee M.H., Park H.J., Cordycepin (3’-deoxyadenosine) inhibits human platelet aggregation in a cAMP- and cGMP-dependent manner, Eur. J. Pharmacol., 2007, 558, 43–51

    Article  CAS  PubMed  Google Scholar 

  29. [29]

    Yu R.M., Song L.Y., Zhao Y., Bin W., Wang L., Zhang H., et al., Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris, Fitoterapia, 2004, 75, 465–472

    Article  CAS  PubMed  Google Scholar 

  30. [30]

    Kim C.S., Lee S.Y., Cho S.H., Ko Y.M., Kim B.H., Kim H.J., et al., Cordyceps militaris induces the IL-18 expression via its promoter activation for IFN-gamma production, J. Ethnopharmacol., 2008, 120, 366–371

    Article  PubMed  Google Scholar 

  31. [31]

    Hwang I.K., Lim S.S., Yoo K.Y., Lee Y.S., Kim H.G., Kang I.L., et al., A phytochemically characterized extract of Cordyceps militaris and cordycepin protect hippocampal neurons from ischemic injury in gerbils, Planta Med., 2008, 74, 114–119

    Article  CAS  PubMed  Google Scholar 

  32. [32]

    Chicoine L.M., Bahr B.A., Excitotoxic protection by polyanionic polysaccharide: evidence of a cell survival pathway involving AMPA receptor-MAPK interactions, J. Neurosci Res., 2007, 85, 294–302

    Article  CAS  PubMed  Google Scholar 

  33. [33]

    Ho Y.S., Yu M.S., Yik S.Y., So K.F., Yuen W.H., Chang R.C., Polysaccharides from Wolfberry Antagonizes Glutamate Excitotoxicity in Rat Cortical neurons, Cell. Mol. Neurobiol., 2009, 29, 1233–1244

    Article  CAS  PubMed  Google Scholar 

  34. [34]

    Leveugle B., Ding W., Laurence F., Dehouck M.P., Scanameo A., Cecchelli R., et al., Heparin oligosaccharides that pass the blood-brain barrier inhibit beta-amyloid precursor protein secretion and heparin binding to beta-amyloid peptide, J. Neurochem., 1998, 70, 736–744

    CAS  PubMed  Article  Google Scholar 

  35. [35]

    Ma Q., Dudas B., Hejna M., Cornelli U., Lee J.M., Lorens S., et al., The blood-brain barrier accessibility of a heparin-derived oligosaccharides C3, Thromb. Res., 2002, 105, 447–453

    Article  CAS  PubMed  Google Scholar 

  36. [36]

    Sakurai-Yamashita Y., Kinugawa H., Niwa M., Neuroprotective effect of pentosan polysulphate on ischemia-related neuronal death of the hippocampus, Neurosci. Lett., 2006, 409, 30–34

    Article  CAS  PubMed  Google Scholar 

  37. [37]

    Sann H., Hoppe S., Baldwin L., Grundy D., Schemann M., Presence of putative neurotransmitters in the mesenteric plexus of the gastrointestinal tract and in the musculature of the urinary bladder of the ferret, Neurogastroenterol. Motil., 1998, 10, 35–47

    Article  CAS  PubMed  Google Scholar 

  38. [38]

    Schemann M., Schaaf C., Mader M., Neurochemical coding of enteric neurons in the guinea pig stomach, J. Comp. Neurol., 1995, 353, 161–178

    Article  CAS  PubMed  Google Scholar 

  39. [39]

    Li Z.S., Pham T.D., Tamir H., Chen J.J., Gershon M.D., Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation, J. Neurosci., 2004, 24, 1330–1339

    Article  CAS  PubMed  Google Scholar 

  40. [40]

    Tsukamoto K., Hayakawa T., Maeda S., Tanaka K., Seki M., Yamamura T., Projections to the alimentary canal from the dopaminergic neurons in the dorsal motor nucleus of the vagus of the rat, Auton. Neurosci., 2005, 123, 12–18

    CAS  PubMed  Google Scholar 

  41. [41]

    Chevalier J., Derkinderen P., Gomes P., Thinard R., Naveilhan P., Vanden Berghe P., et al., Activity dependent regulation of tyrosine hydroxylase expression in the enteric nervous system, J. Physiol., 2008, 586, 1963–1975

    Article  CAS  PubMed  Google Scholar 

  42. [42]

    Wood J.D., Enteric nervous system: Physiology, Encyclopedia of Neuroscience, Elsevier, 2009, 1103–1113

  43. [43]

    Anlauf M., Schafer M.K., Eiden L., Weihe E., Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes, J. Comp. Neurol., 2003, 459, 90–111

    Article  CAS  PubMed  Google Scholar 

  44. [44]

    Li Z.S., Schmauss C., Cuenca A., Ratcliffe E., Gershon M.D., Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice, J. Neurosci., 2006, 26, 2798–2807

    Article  CAS  PubMed  Google Scholar 

  45. [45]

    Hayakawa T., Takanaga A., Tanaka K., Maeda S., Seki M., Distribution and ultrastructure of dopaminergic neurons in the dorsal motor nucleus of the vagus projecting to the stomach of the rat, Brain Res., 2004, 1006, 66–73

    Article  CAS  PubMed  Google Scholar 

  46. [46]

    Elenkov I.J., Wilder R.L., Chrousos G.P., Vizi E.S., The sympathetic nerve - an integrative interface between two supersystems: the brain and the immune system, Pharmacol. Rev., 2000, 52, 595–638

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sung-Jun Kim.

Additional information

These authors contributed equally to this study

About this article

Cite this article

Sapkota, K., Kim, S., Park, Y.L. et al. Enhancement of tyrosine hydroxylase expression by Cordyceps militaris . cent.eur.j.biol. 5, 214–223 (2010). https://doi.org/10.2478/s11535-010-0010-8

Download citation

Keywords

  • Cordyceps militaris
  • Tyrosine hydroxylase
  • Parkinson’s disease
  • Dopaminergic neuron