Advertisement

Central European Journal of Biology

, Volume 5, Issue 2, pp 214–223 | Cite as

Enhancement of tyrosine hydroxylase expression by Cordyceps militaris

  • Kumar Sapkota
  • Seung Kim
  • Young Lan Park
  • Bong-Suk Choi
  • Se-Eun Park
  • Sung-Jun KimEmail author
Research Article
  • 53 Downloads

Abstract

Cordyceps militaris is a popular medicinal mushroom, and has received extensive attention for medical application because of its various physiological activities. However, there is limited information about the function of Cordyceps militaris on dopaminergic system. This study has attempted to evaluate the effect of cultured fruiting bodies of Cordyceps militaris extract (CME) on the expression of the tyrosine hydroxylase (TH) gene in PC12 cells and rat brain and stomach. Related mRNA levels were determined by the RT-PCR. Protein levels were measured by Western blot and immunohistochemistry. Our results demonstrated CME induced TH gene expression both in vitro and in vivo. Treatment of 10 µg/ml and 20 mg/kg CME to PC12 cells and rat cells yielded significant increases of TH protein levels. Significantly, TH immunoreactive neurons were detected not only in the brain but also in the stomach. TH-immunohistochemical staining was markedly enhanced in animals treated with CME compared to those in the untreated control. These results suggest that CME can upregulate the dopaminergic (DArgic) system, and may contribute to neuroprotection in neurodegenerative diseases.

Keywords

Cordyceps militaris Tyrosine hydroxylase Parkinson’s disease Dopaminergic neuron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Nagatsu T., Levitt M., Undenfriend S., Tyrosine hydroxylase, the initial step in norepinephrine biosynthesis, J. Biol. Chem., 1964, 239, 2910–2917PubMedGoogle Scholar
  2. [2]
    Nakashima A., Hayashi N., Kaneko Y.S., Mori K., Sabban E.L., Nagatsu T., et al., Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines, J. Neural. Transm., 2009, 116, 1355–1362CrossRefPubMedGoogle Scholar
  3. [3]
    Moore D.J., West A.B., Dawson V.L., Dawson T.M., Molecular pathophysiology of Parkinson’s disease, Annu. Rev. Neurosci., 2005, 28, 57–87CrossRefPubMedGoogle Scholar
  4. [4]
    Von Bohlen und Halbach O., Schober A., Krieglstein K., Genes, proteins, and neurotoxins involved in Parkinson’s disease, Prog. Neurobiol., 2004, 73, 151–177CrossRefGoogle Scholar
  5. [5]
    Manyam B.V., Dhanasekaran M., Hare T.A., Neuroprotective effects of the antiparkinson drug Mucuna pruriens., Phytother. Res., 2004, 18, 706–712CrossRefPubMedGoogle Scholar
  6. [6]
    Ramassamy C., Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets, Eur. J. Pharmacol., 2006, 545, 51–64CrossRefPubMedGoogle Scholar
  7. [7]
    Leung K.W., Yung K.K., Mak N.K., Chan Y.S., Fan T.P., Wong R.N., Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity, Neuropharmacology, 2007, 52, 827–35CrossRefPubMedGoogle Scholar
  8. [8]
    Sierpinska A., Towards an integrated management of Dendrolimus pini L., Proceedings: Population dynamics, impacts, and integrated management of forest defoliation insects, USDA forest service general technical report NE, 1998, 247, 129–142Google Scholar
  9. [9]
    Cunningham K.G., Hutchinson S.A., Manson W., Spring F.S., Cordycepin, a metabolic product from cultures of Cordyceps militaris (Linn.) Link, Nature, 1950, 166, 949CrossRefPubMedGoogle Scholar
  10. [10]
    Seldin D., Urbano S.L.A., McCaffrey F., Foss R., Phase I trial of cordycepin and deoxycoformycin in TdT-positive acute leukemia, Blood, 1997, 90, 246Google Scholar
  11. [11]
    Zhou X.X., Meyer C.U., Schmidtke Zepp P.F., Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells, Eur. J. Pharmacol., 2002, 453, 309–317CrossRefPubMedGoogle Scholar
  12. [12]
    Kim H.G., Shrestha B., Lim S.Y., Yoon D.H., Chang W.C., Shin D.J., et al., Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells, Eur. J. Pharmacol., 2006, 545, 192–199CrossRefPubMedGoogle Scholar
  13. [13]
    Won S.Y., Park E.H., Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris, J. Ethnopharmacol., 2005, 96, 555–561CrossRefPubMedGoogle Scholar
  14. [14]
    Yu R., Yang W., Song L., Yan C., Zhang Z., Zhao Y., Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris, Carbohydr. Polym., 2007, 70, 430–436CrossRefGoogle Scholar
  15. [15]
    Kim C.S., Lee S.Y., Cho S.H., Ko Y.M., Kim B.H., Kim H.J., et al., Cordyceps militaris induces the IL-18 expression via its promoter activation for IFN-gamma production, J. Ethnopharmacol., 2008, 120, 366–371CrossRefPubMedGoogle Scholar
  16. [16]
    Hsu C.H., Sun H.L., Sheu J.N., Ku M.S., Hu C.M., Chan Y., et al., Effects of the immunomodulatory agent Cordyceps militaris on airway inflammation in a mouse asthma model, Pediatr. Neonatol., 2008, 49, 171–178CrossRefPubMedGoogle Scholar
  17. [17]
    Nagatsu T., Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology, Essays Biochem., 1995, 30, 15–35PubMedGoogle Scholar
  18. [18]
    Theofilopoulos S., Goggi J., Riaz S.S., Jauniaux E., Stern G.M., Bradford H.F., Parallel induction of the formation of dopamine and its metabolites with induction of tyrosine hydroxylase expression in foetal rat and human cerebral cortical cells by brain-derived neurotrophic factor and glial-cell derived neurotrophic factor, Brain Res. Dev. Brain Res., 2001, 127, 111–122CrossRefPubMedGoogle Scholar
  19. [19]
    Lopez-Toledano M.A., Redondo C., Lobo M.V., Reimers D., Herranz A.S., Paino C.L., et al., Tyrosine hydroxylase induction by basic fibroblast growth factor and cyclic AMP analogs in striatal neural stem cells: role of ERK1/ERK2 mitogen-activated protein kinase and protein kinase C, J. Histochem. Cytochem., 2004, 52, 1177–1189CrossRefPubMedGoogle Scholar
  20. [20]
    Gizang-Ginsberg E., Ziff E.B., Nerve growth factor regulates tyrosine hydroxylase gene transcription through a nucleoprotein complex that contains c-fos, Genes Dev., 1990, 4, 477–491CrossRefPubMedGoogle Scholar
  21. [21]
    Carroll J.M., Evinger M.J., Goodman H.M., Joh T.H., Differential and coordinate regulation of TH and PNMT mRNAs in chromaffin cell cultures by second messenger system activation and steroid treatment, J. Mol. Neurosci., 1991, 3, 75–83CrossRefPubMedGoogle Scholar
  22. [22]
    Minner L.L., Pandalai S.P., Weisberg E.P., Sell S.L., Kovacs D.M., Kaplan B.B., Cold-induced alterations in the binding of adrenomedullary nuclear proteins to the promoter region of the tyrosine hydroxylase gene, J. Neurosci. Res., 1992, 33, 10–18CrossRefGoogle Scholar
  23. [23]
    Nagamoto-Coombs K., Piech K.M., Best J.A., Sun B., Tank A.W., Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx, Evidence for cyclic amp-responsive element binding protein-independent regulation, J. Biol. Chem., 1997, 272, 6051–6058CrossRefGoogle Scholar
  24. [24]
    Kim K.S., Lee M.K., Carroll J., Joh T.H., Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element, J. Biol. Chem.,1993, 25, 15689–15695Google Scholar
  25. [25]
    Tinti C., Conti B., Cubells F.J., Kim S.K., Baker H., Joh T.H., Inducible cAMP early repressor can modulate tyrosine hydroxylase gene expression after stimulation of cAMP synthesis, J. Biol. Chem., 1996, 271, 25375–25381CrossRefPubMedGoogle Scholar
  26. [26]
    Ng T.B., Wang H.X., Pharmacological actions of Cordyceps, a prized folk medicine, J. Pharm. Pharmacol., 2005, 57, 1509–1519CrossRefPubMedGoogle Scholar
  27. [27]
    Masocha W., Rottenberg M.E., Kristensson K., Migration of African trypanosomes across the blood-brain barrier, Physiol. Behav., 2007, 92, 110–114CrossRefPubMedGoogle Scholar
  28. [28]
    Cho H.J., Cho J.Y., Rhee M.H., Park H.J., Cordycepin (3’-deoxyadenosine) inhibits human platelet aggregation in a cAMP- and cGMP-dependent manner, Eur. J. Pharmacol., 2007, 558, 43–51CrossRefPubMedGoogle Scholar
  29. [29]
    Yu R.M., Song L.Y., Zhao Y., Bin W., Wang L., Zhang H., et al., Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris, Fitoterapia, 2004, 75, 465–472CrossRefPubMedGoogle Scholar
  30. [30]
    Kim C.S., Lee S.Y., Cho S.H., Ko Y.M., Kim B.H., Kim H.J., et al., Cordyceps militaris induces the IL-18 expression via its promoter activation for IFN-gamma production, J. Ethnopharmacol., 2008, 120, 366–371CrossRefPubMedGoogle Scholar
  31. [31]
    Hwang I.K., Lim S.S., Yoo K.Y., Lee Y.S., Kim H.G., Kang I.L., et al., A phytochemically characterized extract of Cordyceps militaris and cordycepin protect hippocampal neurons from ischemic injury in gerbils, Planta Med., 2008, 74, 114–119CrossRefPubMedGoogle Scholar
  32. [32]
    Chicoine L.M., Bahr B.A., Excitotoxic protection by polyanionic polysaccharide: evidence of a cell survival pathway involving AMPA receptor-MAPK interactions, J. Neurosci Res., 2007, 85, 294–302CrossRefPubMedGoogle Scholar
  33. [33]
    Ho Y.S., Yu M.S., Yik S.Y., So K.F., Yuen W.H., Chang R.C., Polysaccharides from Wolfberry Antagonizes Glutamate Excitotoxicity in Rat Cortical neurons, Cell. Mol. Neurobiol., 2009, 29, 1233–1244CrossRefPubMedGoogle Scholar
  34. [34]
    Leveugle B., Ding W., Laurence F., Dehouck M.P., Scanameo A., Cecchelli R., et al., Heparin oligosaccharides that pass the blood-brain barrier inhibit beta-amyloid precursor protein secretion and heparin binding to beta-amyloid peptide, J. Neurochem., 1998, 70, 736–744PubMedCrossRefGoogle Scholar
  35. [35]
    Ma Q., Dudas B., Hejna M., Cornelli U., Lee J.M., Lorens S., et al., The blood-brain barrier accessibility of a heparin-derived oligosaccharides C3, Thromb. Res., 2002, 105, 447–453CrossRefPubMedGoogle Scholar
  36. [36]
    Sakurai-Yamashita Y., Kinugawa H., Niwa M., Neuroprotective effect of pentosan polysulphate on ischemia-related neuronal death of the hippocampus, Neurosci. Lett., 2006, 409, 30–34CrossRefPubMedGoogle Scholar
  37. [37]
    Sann H., Hoppe S., Baldwin L., Grundy D., Schemann M., Presence of putative neurotransmitters in the mesenteric plexus of the gastrointestinal tract and in the musculature of the urinary bladder of the ferret, Neurogastroenterol. Motil., 1998, 10, 35–47CrossRefPubMedGoogle Scholar
  38. [38]
    Schemann M., Schaaf C., Mader M., Neurochemical coding of enteric neurons in the guinea pig stomach, J. Comp. Neurol., 1995, 353, 161–178CrossRefPubMedGoogle Scholar
  39. [39]
    Li Z.S., Pham T.D., Tamir H., Chen J.J., Gershon M.D., Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation, J. Neurosci., 2004, 24, 1330–1339CrossRefPubMedGoogle Scholar
  40. [40]
    Tsukamoto K., Hayakawa T., Maeda S., Tanaka K., Seki M., Yamamura T., Projections to the alimentary canal from the dopaminergic neurons in the dorsal motor nucleus of the vagus of the rat, Auton. Neurosci., 2005, 123, 12–18PubMedGoogle Scholar
  41. [41]
    Chevalier J., Derkinderen P., Gomes P., Thinard R., Naveilhan P., Vanden Berghe P., et al., Activity dependent regulation of tyrosine hydroxylase expression in the enteric nervous system, J. Physiol., 2008, 586, 1963–1975CrossRefPubMedGoogle Scholar
  42. [42]
    Wood J.D., Enteric nervous system: Physiology, Encyclopedia of Neuroscience, Elsevier, 2009, 1103–1113Google Scholar
  43. [43]
    Anlauf M., Schafer M.K., Eiden L., Weihe E., Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes, J. Comp. Neurol., 2003, 459, 90–111CrossRefPubMedGoogle Scholar
  44. [44]
    Li Z.S., Schmauss C., Cuenca A., Ratcliffe E., Gershon M.D., Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice, J. Neurosci., 2006, 26, 2798–2807CrossRefPubMedGoogle Scholar
  45. [45]
    Hayakawa T., Takanaga A., Tanaka K., Maeda S., Seki M., Distribution and ultrastructure of dopaminergic neurons in the dorsal motor nucleus of the vagus projecting to the stomach of the rat, Brain Res., 2004, 1006, 66–73CrossRefPubMedGoogle Scholar
  46. [46]
    Elenkov I.J., Wilder R.L., Chrousos G.P., Vizi E.S., The sympathetic nerve - an integrative interface between two supersystems: the brain and the immune system, Pharmacol. Rev., 2000, 52, 595–638PubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Kumar Sapkota
    • 1
  • Seung Kim
    • 1
    • 4
  • Young Lan Park
    • 3
  • Bong-Suk Choi
    • 1
    • 2
  • Se-Eun Park
    • 1
    • 2
  • Sung-Jun Kim
    • 1
    • 2
    Email author
  1. 1.Department of BiotechnologyChosun UniversityGwangjuRepublic of Korea
  2. 2.BK21 Research Team for Protein Activity ControlChosun UniversityGwangjuRepublic of Korea
  3. 3.Cancer Research Center, Hwasun HospitalChonnam National UniversityJeonnamRepublic of Korea
  4. 4.Department of Alternative medicineGwangju UniversityGwangjuRepublic of Korea

Personalised recommendations